七年級整式的加減教案7篇

時(shí)間:2022-11-02 作者:Iraqis 備課教案

不管是哪個(gè)學(xué)科的教師,都是要在上課前將教案準(zhǔn)備好的,在上課前擁有一份詳細(xì)的教案是可以讓我們有很大的安全感的,以下是范文社小編精心為您推薦的七年級整式的加減教案7篇,供大家參考。

七年級整式的加減教案7篇

七年級整式的加減教案篇1

教學(xué)目標(biāo)

知識與能力:掌握去括號法則,運(yùn)用法則,能按要求正確去括號.

過程與方法:經(jīng)歷類比帶有括號的有理數(shù)的運(yùn)算,探究、發(fā)現(xiàn)去括號時(shí)的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.

情感、態(tài)度與價(jià)值觀:通過參與探究活動,培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度,體會合作與交流的重要性.

教學(xué)重難點(diǎn)

重點(diǎn):去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡.

難點(diǎn):括號前面是“-”號,去括號時(shí)括號內(nèi)各項(xiàng)都變號.

教學(xué)過程

一、復(fù)習(xí)舊知

1. 化??

-(+5) +(+5) -(-7) +(-7)

2. 去括號

① -(3- 7) ② +(3- 7)

二、探索新知

想一想:根據(jù)分配律,你能為下面的式子去括號嗎?

①+(- a+c) ② - (- a+c)

③ +(a-b+c) ④ -(a-b+c)

觀察這兩組算式,看看去括號前后,括號里各項(xiàng)的符號有什么變化?

去括號法則:

括號前是“+”號的,把括號和它前面的“+”號去掉,

括號里各項(xiàng)都不改變符號;

括號前是“ - ”號的,把括號和它前面的“ - ”號去掉,

括號里各項(xiàng)都改變符號。

順口溜:

去括號,看符號;是“+”號,不變號;是“-”號,全變號。

三、鞏固練習(xí):

(1)去括號:

a+(b-c)= _______ a- (b-c)= ______

a+(- b+c)= _______ a- (- b+c)= ______

(2)判斷正誤

a-(b+c)=a-b+c ( )

a-(b-c)=a-b-c ( )

2b+(-3a+1)=2b-3a-1 ( )

3a-(3b-c)=3a-3b+c ( )

四、例題學(xué)習(xí):為下面的式子去括號

+3(a - b+c) - 3(a - b+c)

五、課堂檢測:

去括號:

① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)

六、課堂小結(jié)

去括號時(shí)應(yīng)注意的事項(xiàng):

(1)、去括號時(shí)應(yīng)先判斷括號前面是“+”號還是“-”號。

(2)、去括號后,括號內(nèi)各項(xiàng)符號要么全變號,要么全不變號。

(3)、括號前面是“-”號時(shí),去掉括號后,括號內(nèi)的各項(xiàng)都要改變符號,不能只改變第一項(xiàng)或前幾項(xiàng)的符號。

七、布置作業(yè):

必做題:課本70頁習(xí)題2.2 第2,3題

選做題:課本70頁 習(xí)題2.2 第4題

七年級整式的加減教案篇2

一、學(xué)生起點(diǎn)分析

學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過算術(shù)四則運(yùn)算,而初中的有理數(shù)運(yùn)算是以小學(xué)算術(shù)四則運(yùn)算為基礎(chǔ)的,不同的是有理數(shù)運(yùn)算多了一個(gè)符號問題。符號法則是有理數(shù)運(yùn)算法則的重要組成部分,也是學(xué)生學(xué)習(xí)本章知識和今后學(xué)習(xí)其他與計(jì)算有關(guān)的內(nèi)容時(shí)容易出錯(cuò)的知識點(diǎn)之一。

學(xué)生活動經(jīng)驗(yàn)基礎(chǔ):在前面相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些數(shù)學(xué)活動,感受到了數(shù)的范圍的擴(kuò)大,能借助生活經(jīng)驗(yàn)對一些簡單的實(shí)際問題進(jìn)行有理數(shù)的運(yùn)算,如計(jì)算比賽的得分,計(jì)算溫差等等。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定數(shù)學(xué)交流的能力。

學(xué)生學(xué)習(xí)中的困難預(yù)設(shè):學(xué)生學(xué)習(xí)數(shù)學(xué)是一種認(rèn)識過程,要遵循一般的認(rèn)識規(guī)律,而七年級的學(xué)生,對異號兩數(shù)相加從未接觸過,與小學(xué)加法比較,思維強(qiáng)度增大,需要通過絕對值大小的比較來確定和的符號和加法轉(zhuǎn)化為減法兩個(gè)過程,要求學(xué)生在課堂上短時(shí)間內(nèi)完成這個(gè)認(rèn)識過程確有一定的難度,在教學(xué)時(shí)應(yīng)從實(shí)例出發(fā),充分利用教材中的正負(fù)抵消的思想,用數(shù)形結(jié)合的觀點(diǎn)加以解釋,讓學(xué)生感知法則的由來,以突破這一難點(diǎn)。

二、教學(xué)任務(wù)分析

對于有理數(shù)的運(yùn)算,首先在于運(yùn)算的意義的理解,即首先要回答為什么要進(jìn)行運(yùn)算。為此,必須讓學(xué)生通過具體的問題情境,認(rèn)識到運(yùn)算的作用,加深學(xué)生對運(yùn)算本身意義的理解,同時(shí)也讓學(xué)生體會到運(yùn)算的應(yīng)用,從而培養(yǎng)學(xué)生一定的應(yīng)用意識和能力。教科書基于學(xué)生學(xué)習(xí)了相反數(shù)和絕對值基礎(chǔ)之上,提出了本課時(shí)的具體學(xué)習(xí)任務(wù):探索有理數(shù)的加法運(yùn)算法則,進(jìn)行有理數(shù)的加法運(yùn)算。本課時(shí)的教學(xué)重點(diǎn)是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進(jìn)行計(jì)算,教學(xué)難點(diǎn)是異號兩數(shù)相加的法則。教學(xué)方法是“引導(dǎo)——分類——歸納”。本課時(shí)的教學(xué)目標(biāo)如下:

1.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;

2.能熟練進(jìn)行整數(shù)加法運(yùn)算;

3.培養(yǎng)學(xué)生的數(shù)學(xué)交流和歸納猜想的能力;

4.滲透分類、探索、歸納等思想方法,使學(xué)生了解研究數(shù)學(xué)的一些基本方法。

三、教學(xué)過程設(shè)計(jì)

本課時(shí)設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)引入,提出問題;第二環(huán)節(jié):活動探究,猜想結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

(一)復(fù)習(xí)引入,提出問題

活動內(nèi)容:

1.復(fù)習(xí)提問:

(1)下列各組數(shù)中,哪一個(gè)較大?

(2)一位同學(xué)在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點(diǎn)的哪個(gè)方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負(fù),該問題用算式表示為 。

活動目的:我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。這里先讓學(xué)生回顧在具體問題中感受正數(shù)和負(fù)數(shù)的加法運(yùn)算。

2.提出問題:

某班舉行知識競賽,評分標(biāo)準(zhǔn)是:答對一題加1分,答錯(cuò)一題扣1分,不回答得0分.

如果我們用1個(gè) 表示+1,用1個(gè) ,那么 就表示0,同樣 也表示0.

(1)計(jì)算(-2)+(-3).

在方框中放進(jìn)2個(gè) 和3個(gè) :

因此,(-2)+(-3)= -5.

用類似的方法計(jì)算(2)(-3)+ 2

(3) 3 +(-2)

(4) 4+(-4)

思考: 兩個(gè)有理數(shù)相加,還有哪些不同的情形?舉例說明。

引導(dǎo)學(xué)生列舉兩個(gè)正數(shù)相加,如3 + 2,一個(gè)數(shù)和零相加,如0+(-4),4 + 0。

活動目的:通過實(shí)際問題情境類比列出兩個(gè)有理數(shù)相加的7種不同情形,兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。進(jìn)而討論如何進(jìn)行一般的有理數(shù)加法的運(yùn)算。

活動的實(shí)際效果: 實(shí)際問題情境為學(xué)生營造了良好的學(xué)習(xí)氛圍,利于他們積極探究.

(二)活動探究,猜想結(jié)論:

上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號怎么定?絕對值怎么算?

學(xué)生分組進(jìn)行活動,教師關(guān)注學(xué)生在活動中的表現(xiàn),可以根據(jù)學(xué)生的實(shí)際情況給予適當(dāng)點(diǎn)撥和引導(dǎo),鼓勵(lì)學(xué)生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認(rèn)識。

對“一起探究”,教師可引導(dǎo)學(xué)生按以下步驟思考:

1、觀察列出的具體算式,根據(jù)兩個(gè)加數(shù)的符號分類:兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個(gè)加數(shù)為0。

2、同號兩數(shù)相加時(shí),和的符號與兩個(gè)加數(shù)的符號有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎樣的關(guān)系?異號兩數(shù)相加時(shí)和的符號與兩個(gè)加數(shù)的符號有怎樣的關(guān)系?和的絕對值和加數(shù)的絕對值有怎么樣的關(guān)系?有一個(gè)加數(shù)為0時(shí),和是什么?

3、從中歸納概括出規(guī)律

在學(xué)生探究的基礎(chǔ)上,教師引出規(guī)定的加法法則。

在活動中,盡可能讓學(xué)生獨(dú)立完成,必要時(shí)可以交流,教師只在適當(dāng)?shù)臅r(shí)候給予幫助。

同號兩數(shù)相加,取相同的符號,并把絕對值相加。

異號兩數(shù)相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

活動目的:利用分組討論、分類歸納幫助學(xué)生理解加法運(yùn)算過程,同時(shí)有利于加法運(yùn)算法則的歸納。

活動的實(shí)際效果:由于采用了圖示的教學(xué)手段,在教師的引導(dǎo)下讓學(xué)生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達(dá)規(guī)律,最后由學(xué)生對規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則.通過實(shí)際問題情境,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學(xué)生的分類和歸納概括的能力。

(三)驗(yàn)證明確結(jié)論:

例1 計(jì)算下列算式的結(jié)果,并說明理由:

(1) 180 +(-10) (2) (-10)+(-1);

(3)5+(-5); (4) 0+(-2)

活動目的:給學(xué)生提供示范,進(jìn)行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進(jìn)行,一觀察是指觀察兩個(gè)加數(shù)是同號還是異號,二確定是指確定“和”的符號,三求和是指計(jì)算“和”的絕對值.

活動的實(shí)際效果:通過習(xí)題,加深了學(xué)生對有理數(shù)加法法則的理解。

(四)運(yùn)用鞏固:

活動內(nèi)容:

1. 口答下列算式的結(jié)果

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(5)(+4)+(-4); (6) (-3)+0

(7) 0+(+2); (8) 0+0.

活動目的:通過這組練習(xí),讓學(xué)生進(jìn)一步鞏固有理數(shù)加法的法則,達(dá)到熟練程度。

2.請同學(xué)們完成書上的隨堂練習(xí):

(1)(-25)+(-7); (2)(-13)+5;

(3)(-23)+0; (4)45+(-45)

全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對學(xué)生板演進(jìn)行講評.

活動目的:習(xí)題的配備上,注意到學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以由易到難,使學(xué)生在練習(xí)的過程中能夠逐步地提高能力,得到發(fā)展。

活動的實(shí)際效果: 通過練習(xí)進(jìn)一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯(cuò),活躍課堂氣氛,充分調(diào)動學(xué)生的積極性,學(xué)生在一種比較活躍的氛圍中,解決各種(五)課堂小結(jié):

活動內(nèi)容:師生共同總結(jié)。

1. 兩個(gè)有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號,最后確定和的絕對值

2. 有理數(shù)加法法則及其應(yīng)用。

3. 注意異號的情況。

活動目的:課堂小結(jié)并不只是課堂知識點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對所學(xué)知識鞏固的目的。

活動的實(shí)際效果: 學(xué)生對“一觀察,二確定,三求和”的步驟印象較深,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。

七年級整式的加減教案篇3

教學(xué)目標(biāo)

1.知識與技能

(1)能從現(xiàn)實(shí)物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;

(2)能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進(jìn)行研究和處理,•探索平面圖形與立體圖形之間的關(guān)系.

2.過程與方法

(1)經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,•培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力.

(2)經(jīng)歷問題解決的過程,提高解決問題的能力.

3.情感態(tài)度與價(jià)值觀

(1)積極參與教學(xué)活動過程,形成自覺、認(rèn)真的學(xué)習(xí)態(tài)度,•培養(yǎng)敢于面對學(xué)習(xí)困難的精神,感受幾何圖形的美感;

(2)倡導(dǎo)自主學(xué)習(xí)和小組合作精神,在獨(dú)立思考的基礎(chǔ)上,•能從小組交流中獲益,并對學(xué)習(xí)過程進(jìn)行正確評價(jià),體會合作學(xué)習(xí)的重要性.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):從現(xiàn)實(shí)物體中抽象出幾何圖形,•把立體圖形轉(zhuǎn)化為平面圖形是重點(diǎn).

2.難點(diǎn):立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn).

3.關(guān)鍵:從現(xiàn)實(shí)情境出發(fā),通過動手操作進(jìn)行實(shí)驗(yàn),•結(jié)合小組交流學(xué)習(xí)是關(guān)鍵.

教具準(zhǔn)備

長方體、正方體、球、圓柱、圓錐等幾何體模型,墨水瓶包裝盒(每個(gè)學(xué)生都準(zhǔn)備一個(gè))教學(xué)掛圖

教學(xué)過程

一、引入新課

1.打開課本,看第117頁城市的現(xiàn)代化建筑,學(xué)生認(rèn)真觀看.

2.提出問題:有哪些是我們熟悉的幾何圖形?

二、新授

1.學(xué)生在回顧剛才所看的圖后,充分發(fā)表自己的意見,并通過小組交流,補(bǔ)充自己的意見,積累小組活動經(jīng)驗(yàn).

2.指定一名學(xué)生回答問題,并能正確說出這些幾何圖形的名稱. 學(xué)生回答:有圓柱、長方體、正方體等等.

教師活動:糾正學(xué)生所說幾何圖形名稱中的錯(cuò)誤,并出示相應(yīng)的幾何體模型讓學(xué)生觀察它們的特征.

3.立體圖形的概念.

(1)長方體、正方體、球、圓柱、圓錐等都是立體圖形.

(2)學(xué)生活動:看課本圖4.1-3后學(xué)生思考:這些物體給我們什么樣的立體圖形的形象?(棱柱和棱錐)

(3)用教學(xué)掛圖展示圖4.1-4

(4)提出問題:在掛圖中中,包含哪些簡單的平面圖形?

(5)探索解決問題的方法.

①學(xué)生進(jìn)行小組交流,教師對各小組進(jìn)行指導(dǎo),通過交流,得出問題的答案.

②學(xué)生回答:包含的平面圖形有長方形、圓、正方形、多邊形和三角形等.

4.平面圖形的概念.

長方形、正方形、三角形、圓等都是我們十分熟悉的平面圖形. 注:對立體圖形和平面圖形的概念,不要求給出完整的定義,只要求學(xué)生能夠正確區(qū)分立體圖形和平面圖形.

5.立體圖形和平面圖形的轉(zhuǎn)化.

(1)從不同方向看:出示課本圖4.1-7(1)中所示工件模型,•讓學(xué)生從不同方向看.

(2)提出問題.

從正面看,從左面看,從上面看,你們會得出什么樣的平面圖形?能把看到的平面圖形畫出來嗎?

(3)探索解決問題的方法.

①學(xué)生活動:讓學(xué)生從不同方向看工件模型,獨(dú)立畫出得到的各種平面圖形.

②進(jìn)行小組交流,評價(jià)各自獲得的結(jié)論,得出正確結(jié)論. ③指定三名學(xué)生,板書畫出的圖形.

6.思考并動手操作.

七年級整式的加減教案篇4

教材分析:

?解一元一次方程(一)合并同類項(xiàng)與移項(xiàng)》是義務(wù)教育教科書七年級數(shù)學(xué)上冊第三章第二節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)會了有理數(shù)運(yùn)算,掌握了單項(xiàng)式、多項(xiàng)式的有關(guān)概念及同類項(xiàng)、合并同類項(xiàng),和等式性質(zhì),進(jìn)一步將所學(xué)知識運(yùn)用到解方程中。這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。合并同類項(xiàng)與移項(xiàng)是解方程的基礎(chǔ),解方程它的移項(xiàng)根據(jù)是等式性質(zhì)1、系數(shù)化為1它的根據(jù)是等式性質(zhì)2,解方程是今后進(jìn)一步學(xué)習(xí)不可缺少的知識。因而,解方程是初中數(shù)學(xué)中必須要掌握的重點(diǎn)內(nèi)容。

設(shè)計(jì)思路:

?數(shù)學(xué)課程標(biāo)準(zhǔn)》中明確指出:學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?;谝陨侠砟?,結(jié)合本節(jié)課內(nèi)容及學(xué)生情況,教學(xué)設(shè)計(jì)中采用了探究發(fā)現(xiàn)法和多媒體輔助教學(xué)法,在學(xué)生已有的知識儲備基礎(chǔ)上,利用課件,鼓勵(lì)和引導(dǎo)學(xué)生采用自主探索與合作交流相結(jié)合的方式進(jìn)行學(xué)習(xí),讓學(xué)生始終處于積極探索的過程中,通過學(xué)生動手練習(xí),動腦思考,完成教學(xué)任務(wù)。其基本程序設(shè)計(jì)為:

復(fù)習(xí)回顧、設(shè)問題導(dǎo)入 探索規(guī)律、形成解法 例題講解、熟練運(yùn)算

鞏固練習(xí)、內(nèi)化升華 回顧反思、進(jìn)行小結(jié) 達(dá)標(biāo)測試、反饋情況

作業(yè)布置、反饋情況。

教學(xué)目標(biāo):

1、知識與技能:(1)通過分析實(shí)際問題中的數(shù)量關(guān)系,建立方程解決實(shí)際問題,進(jìn)一步認(rèn)識方程模型的重要性;(2)、掌握移項(xiàng)方法,學(xué)會解“a·+b=c·+d”的一元一次方程,理解解方程的目標(biāo),體會解法中蘊(yùn)涵的化歸思想。

2、過程與方法:通過解形如“a·+b=c·+d”形式的方程,體驗(yàn)數(shù)學(xué)的建模思想。

3、情感、態(tài)度與價(jià)值觀:通過合作探究,培養(yǎng)學(xué)生積極思考、勇于探索的精神。

教學(xué)重點(diǎn):建立方程解決實(shí)際問題,會解“a·+b=c·+d”類型的一元一次方程。

教學(xué)難點(diǎn):分析實(shí)際問題中的相等關(guān)系,列出方程。

教學(xué)方法:先學(xué)后教,當(dāng)堂訓(xùn)練。

教學(xué)準(zhǔn)備:多媒體課件等。

預(yù)習(xí)要求:要求學(xué)生自學(xué)教材第88——89頁的課文內(nèi)容。然后根據(jù)自己的理解分析問題2及例2;并試著進(jìn)行嘗試練習(xí)。找出自學(xué)中存在的問題,以便課堂學(xué)習(xí)中解決。

教學(xué)過程:

一、準(zhǔn)備階段:

1、知識回顧:

(1)、用合并同類項(xiàng)的方法解一元一次方程的步驟是什么?

(2)、解下列方程:

① -3·-2·=10 ②

2、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

問題:

把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

如何解決這個(gè)問題呢?

二、導(dǎo)學(xué)階段:

(一)、出示本節(jié)課的學(xué)習(xí)目標(biāo):

1、通過分析實(shí)際問題中的數(shù)量關(guān)系,建立用方程解決問題的建模思想和方法;

2、掌握移項(xiàng)方法,學(xué)會解“a·+b=c·+d”類型的一元一次方程,理解解方程的目標(biāo),體會解法中蘊(yùn)涵的化歸思想。

(二)、合作交流,探究新知

1、分析解決課前提出的問題。

問題:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少人?

分析: 設(shè)這個(gè)班有·名學(xué)生.

每人分3本,共分出___本,加上剩余的20本,這批書共____________本.

每人分4本,需要______本,減去缺的25本,這批書共____________本.

這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

這批書的總數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,

即表示同一個(gè)量的兩個(gè)不同的式子相等.

根據(jù)這一相等關(guān)系列得方程:

方程的兩邊都有含·的項(xiàng)(3·和4·)和不含字母的常數(shù)項(xiàng)(20與-25),怎樣才能使它向 ·=a(常數(shù))的形式轉(zhuǎn)化呢?

方法過程:

2、總結(jié)移項(xiàng)的概念。

像上面這樣把等式一邊的某項(xiàng)變號后移到另一邊,叫做 “移項(xiàng)” .

3、思考:上面解方程中“移項(xiàng)”起到了什么作用?

4、例題學(xué)習(xí)

運(yùn)用移項(xiàng)的方法解下列方程:

三、課堂練習(xí):

運(yùn)用移項(xiàng)的方法解下列方程:

四、課堂小結(jié):

本節(jié)課,我們學(xué)習(xí)了哪些知識?你還有哪些困惑?

五、達(dá)標(biāo)測試:

運(yùn)用移項(xiàng)的方法解下列方程:(25′×4=100′)

六、預(yù)習(xí)作業(yè):

1、預(yù)習(xí)作業(yè):自學(xué)課本第90頁的課文內(nèi)容及例4,完成第90頁練習(xí)2題;

2、課后作業(yè):(1)

七年級整式的加減教案篇5

(一)教材所處的地位

人教版《數(shù)學(xué)》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運(yùn)算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。

(二)單元教學(xué)目標(biāo)

(1)理解并掌握單項(xiàng)式、多項(xiàng)式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

(2)理解同類項(xiàng)概念,掌握合并同類項(xiàng)的方法,掌握去括號時(shí)符號的變化規(guī)律,能正確地進(jìn)行同類項(xiàng)的合并和去括號。在準(zhǔn)確判斷、正確合并同類項(xiàng)的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。

(3)理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類項(xiàng)、去括號的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算律性質(zhì)在整式的加減運(yùn)算中仍然成立。

(4)能分析實(shí)際問題中的數(shù)量關(guān)系,并列出整式表示 .體會用字母表示數(shù)后,從算術(shù)到代數(shù)的進(jìn)步。

(5)滲透數(shù)學(xué)知識來源于生活,又要為生活而服務(wù)的辯證觀點(diǎn);通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學(xué)生由特殊到一般的思維;體會整式的加減實(shí)質(zhì)上就是去括號,合并同類項(xiàng),結(jié)果總是比原來簡潔,體現(xiàn)了數(shù)學(xué)的簡潔美。

(三)單元教學(xué)的重難點(diǎn)

(1)重點(diǎn):理解單項(xiàng)式、多項(xiàng)式的相關(guān)概念;熟練進(jìn)行合并同類項(xiàng)和去括號的運(yùn)算。

(2)難點(diǎn):準(zhǔn)確地進(jìn)行合并同類項(xiàng),準(zhǔn)確地處理去括號時(shí)的符號。

(四)單元教學(xué)思路及策略

(1)注意與小學(xué)相關(guān)內(nèi)容的銜接。

(2)加強(qiáng)與實(shí)際的聯(lián)系。

(3)類比“數(shù)”學(xué)習(xí)“式”,加強(qiáng)知識的內(nèi)在聯(lián)系,重視數(shù)學(xué)思想方法的滲透。

(4)抓住重難點(diǎn)、加強(qiáng)練習(xí)。

(五)學(xué)生學(xué)習(xí)易錯(cuò)點(diǎn)分析:

(1)忽視單項(xiàng)式的定義,誤認(rèn)為式子 是單項(xiàng)式。

(2)忽視單項(xiàng)式系數(shù)的定義,誤認(rèn)為 的系數(shù)是4.

(3)忽視單項(xiàng)式的次數(shù)的定義,誤認(rèn)為3a的次數(shù)是0.

(4)忽視多項(xiàng)式的定義,誤認(rèn)為 是單項(xiàng)式。

(5)忽視多項(xiàng)式的定義,誤認(rèn)為 的次數(shù)是7.

(6)忽視多項(xiàng)式的項(xiàng)的定義,誤認(rèn)為多項(xiàng)式 的項(xiàng)分別為 .

(7)把多項(xiàng)式的各項(xiàng)重新排列時(shí),忽視要帶它前面的符號。

(8)忽視同類項(xiàng)的定義,誤認(rèn)為2x3y4與-y4x3不是同類項(xiàng)。

(9)合并同類項(xiàng)時(shí),誤把字母的指數(shù)也相加。

(10) 去括號時(shí)符號的處理。

(11)兩整式相減時(shí),忽略加括號。

(六)教學(xué)建議:

(1)了解整式并學(xué)好合并同類項(xiàng)的關(guān)鍵是什么?

整式的加減法,實(shí)際上就是合并同類項(xiàng),同類項(xiàng)的概念以及合并同類項(xiàng)的方法,是本章的重點(diǎn),而同類項(xiàng)及其合并是以單項(xiàng)式為基礎(chǔ)的,所以,單項(xiàng)式的概念或意義是完成合并的關(guān)鍵。

(2)單項(xiàng)式與多項(xiàng)式有什么聯(lián)系與區(qū)別?

教材中先講單項(xiàng)式、后講多項(xiàng)式,然后概括為單項(xiàng)式、多項(xiàng)式統(tǒng)稱為整式,對于單項(xiàng)式的系數(shù),僅限于數(shù)字系數(shù)(單項(xiàng)式中的數(shù)字因數(shù)),這點(diǎn)務(wù)求仔細(xì)體會,切不可加以引申,而多項(xiàng)式?jīng)]有系數(shù);對于次數(shù),單項(xiàng)式的次數(shù)指,所有字母的指數(shù)之和,而多項(xiàng)式的次數(shù)是多項(xiàng)式中次數(shù)最高的項(xiàng)(單項(xiàng)式)的次數(shù),需要加以注意的問題是:單項(xiàng)式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項(xiàng)式x的系數(shù)是1,且單獨(dú)一個(gè)數(shù)(零次單項(xiàng)式)或一個(gè)字母,也是單項(xiàng)式,對于0也是一個(gè)單項(xiàng)式;多項(xiàng)式的每一項(xiàng)都應(yīng)包含它前面得符號;單項(xiàng)式和多項(xiàng)式得分母中不能含有字母。

(3)學(xué)習(xí)合并同類項(xiàng)的方法;

先把同類項(xiàng)分別作上記號,然后根據(jù)合并同類項(xiàng)的法則進(jìn)行合并,合并后把多項(xiàng)式按某一字母降冪或升冪排列;當(dāng)多項(xiàng)式中同類項(xiàng)的系數(shù)互為相反數(shù)時(shí),合并后為0;

(4)什么是合并同類項(xiàng)中要加以注意的“兩同”?

合并同類項(xiàng)是整式加減的基礎(chǔ),深入理解同類項(xiàng)的概念,又是掌握合并同類項(xiàng)的關(guān)鍵,教材中通過一個(gè)探究問題(三個(gè)填空題)的引入,進(jìn)行比較、歸納,從而得出判斷同類項(xiàng)的 “兩同”標(biāo)準(zhǔn):所含字母相同,并且相同字母的指數(shù)也相同,這樣的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng),同類項(xiàng)至少有兩個(gè),單項(xiàng)式不叫同類項(xiàng)。

(5)其它注意事項(xiàng):

①整式中,只含一項(xiàng)的是單項(xiàng)式,否則是多項(xiàng)式。分母中含有字母的代數(shù)式不是整式,當(dāng)然也不是單項(xiàng)式或多項(xiàng)式。

②單項(xiàng)式的次數(shù)是所有字母的指數(shù)之和;多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù)。

③單項(xiàng)式的系數(shù)包括它前面的符號,多項(xiàng)式中每一項(xiàng)的系數(shù)也包括它前面的符號。

④去括號時(shí),要特別注意括號前面是“-”號的情形。

(七)課時(shí)安排:

第1課時(shí) 單項(xiàng)式

第2課時(shí) 多項(xiàng)式

第3課時(shí) 整式的加減(1)------合并同類項(xiàng)

第4課時(shí) 整式的加減(2)------去括號

第5課時(shí) 整式的加減(3)------一般步驟

第6課時(shí) 整式的加減(4)------化簡求值

第7課時(shí) 數(shù)學(xué)活動

第8課時(shí) 復(fù)習(xí)課

七年級整式的加減教案篇6

教學(xué)目標(biāo):

1.理解同類項(xiàng)的概念,在具體情景中認(rèn)識同類項(xiàng).

2.初步體會數(shù)學(xué)與人類生活的密切聯(lián)系.

教學(xué)重點(diǎn):理解同類項(xiàng)的概念.

教學(xué)難點(diǎn):根據(jù)同類項(xiàng)的概念在多項(xiàng)式中找同類項(xiàng).

教學(xué)過程:

一、復(fù)習(xí)引入

1.創(chuàng)設(shè)問題情境

(1)5個(gè)人+8個(gè)人=;?

(2)5只羊+8只羊=;?

(3)5個(gè)人+8只羊=.?

2.觀察下列各單項(xiàng)式,把你認(rèn)為類型相同的式子歸為一類.

8x2y, -mn2, 5a, -x2y, 7mn2,, 9a, -, 0, 0.4mn2,,2xy2.

由學(xué)生小組討論后,按不同標(biāo)準(zhǔn)進(jìn)行多種分類,教師巡視后把不同的分類方法投影顯示出來.

要求學(xué)生觀察歸為一類的式子,思考它們有什么共同的特征?

請學(xué)生說出各自的分類標(biāo)準(zhǔn),并且肯定每一位學(xué)生按不同標(biāo)準(zhǔn)進(jìn)行的分類.

二、講授新課

1.同類項(xiàng)的定義:

我們常常把具有相同特征的事物歸為一類.8x2y與-x2y可以歸為一類,2xy2與-可以歸為一類,-mn2、7mn2與0.4mn2可以歸為一類,5a與9a可以歸為一類,還有、0與也可以歸為一類.8x2y與-x2y只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是2,y的指數(shù)都是1;同樣地,2xy2與-也只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是1,y的指數(shù)都是2.

像這樣,所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng)叫做同類項(xiàng).另外,所有的常數(shù)項(xiàng)都是同類項(xiàng).比如,前面提到的、0與也是同類項(xiàng).

2.例題:

?例1】判斷下列說法是否正確,正確地在括號內(nèi)打“√”,錯(cuò)誤的打“×”.

(1)3x與3mx是同類項(xiàng).()

(2)2ab與-5ab是同類項(xiàng). ()

(3)3x2y與-yx2是同類項(xiàng).()

(4)5ab2與-2ab2c是同類項(xiàng). ()

(5)23與32是同類項(xiàng).()

?例2】指出下列多項(xiàng)式中的同類項(xiàng):

(1)3x-2y+1+3y-2x-5;

(2)3x2y-2xy2+xy2-yx2.

?例3】k取何值時(shí),3xky與-x2y是同類項(xiàng)?

?例4】若把(s+t)、(s-t)分別看作一個(gè)整體,指出下面式子中的同類項(xiàng).

(1) (s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.

3.課堂練習(xí):請寫出2ab2c3的一個(gè)同類項(xiàng).你能寫出多少個(gè)?它本身是自己的同類項(xiàng)嗎?

三、課時(shí)小結(jié)

1.理解同類項(xiàng)的概念,會在多項(xiàng)式中找出同類項(xiàng),會寫出一個(gè)單項(xiàng)式的同類項(xiàng),會判斷幾個(gè)單項(xiàng)式是否是同類項(xiàng).

2.這堂課運(yùn)用到分類思想和整體思想等數(shù)學(xué)思想方法.

3.學(xué)習(xí)同類項(xiàng)的用途是為了簡化多項(xiàng)式,為下一課的合并同類項(xiàng)打下基礎(chǔ).

四、課堂作業(yè)

若2amb2m+3n與a2n-3b8的和仍是一個(gè)單項(xiàng)式,則m與 n的值分別是.?

第2課時(shí)合并同類項(xiàng)

教學(xué)目的:

1.理解合并同類項(xiàng)的概念,掌握合并同類項(xiàng)的法則.

2.滲透分類和類比的思想方法.

教學(xué)重點(diǎn):正確合并同類項(xiàng).

教學(xué)難點(diǎn):找出同類項(xiàng)并正確地合并.

教學(xué)過程:

一、復(fù)習(xí)引入

為了搞好班會活動,李明和張強(qiáng)去購買一些水筆和軟面抄作為獎(jiǎng)品.他們首先購買了15本軟面抄和20支水筆,經(jīng)過預(yù)算,發(fā)現(xiàn)這么多獎(jiǎng)品不夠用,然后他們又去購買了6本軟面抄和5支水筆.問:

1.他們兩次共買了多少本軟面抄和多少支水筆?

2.若設(shè)軟面抄的單價(jià)為每本x元,水筆的單價(jià)為每支y元,則這次活動他們支出的總金額是多少元?

二、講授新課

1.合并同類項(xiàng)的定義:

(學(xué)生討論問題2)可根據(jù)購買的時(shí)間次序列出代數(shù)式,也可根據(jù)購買物品的種類列出代數(shù)式,再運(yùn)用加法的交換律與結(jié)合律將同類項(xiàng)結(jié)合在一起,將它們合并起來,化簡整個(gè)多項(xiàng)式,所得結(jié)果都為(21x+25y)元.

由此可得:把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng).(板書:合并同類項(xiàng).)

2.例題:

?例1】找出多項(xiàng)式3x2y-4xy2-3+5x2y+2xy2+5中的同類項(xiàng),并合并同類項(xiàng).

根據(jù)以上合并同類項(xiàng)的實(shí)例,讓學(xué)生討論、歸納,得出合并同類項(xiàng)的法則:

把同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母指數(shù)保持不變.

?例2】下列各題合并同類項(xiàng)的結(jié)果對不對?若不對,請改正.

(1)2x2+3x2=5x4;(2)3x+2y=5xy;

(3)7x2-3x2=4; (4)9a2b-9ba2=0.

?例3】合并下列多項(xiàng)式中的同類項(xiàng):

(1)2a2b-3a2b+0.5a2b;

(2)a3-a2b+ab2+a2b-ab2+b3;

(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.

(用不同的記號標(biāo)出各同類項(xiàng),會減少運(yùn)算錯(cuò)誤,當(dāng)然熟練后可以不再標(biāo)出.其中第(3)題應(yīng)把(x+y)、(x-y)看作一個(gè)整體,特別注意(x-y)2n=(y-x)2n,n為正整數(shù).)

?例4】求多項(xiàng)式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.

試一試把x=-3直接代入例4這個(gè)多項(xiàng)式,可以求出它的值嗎?與上面的解法比較一下,哪個(gè)解法更簡便?

(通過比較這兩種方法,使學(xué)生認(rèn)識到:在求多項(xiàng)式的值時(shí),常常先合并同類項(xiàng),再求值,這樣比較簡便.)

3.課堂練習(xí):課本p65練習(xí)第1,2,3題.

三、課時(shí)小結(jié)

1.要牢記法則,熟練正確地合并同類項(xiàng),以防止出現(xiàn)類似2x2+3x2=5x4的錯(cuò)誤.

2.從實(shí)際問題中類比概括得出合并同類項(xiàng)法則并能運(yùn)用法則,正確地合并同類項(xiàng).

四、課堂作業(yè)

課本p69習(xí)題2.2的第1題.

第3課時(shí)去括號

教學(xué)目標(biāo):

1.能運(yùn)用運(yùn)算律探究去括號法則,并且利用去括號法則將整式化簡.

2.經(jīng)歷帶有括號的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號時(shí)符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.

教學(xué)重點(diǎn):準(zhǔn)確應(yīng)用去括號法則將整式化簡.

教學(xué)難點(diǎn):括號前面是“-”號,去括號時(shí),括號內(nèi)各項(xiàng)要變號,容易產(chǎn)生錯(cuò)誤.

七年級整式的加減教案篇7

一、三維目標(biāo)。

(一)知識與技能。

能運(yùn)用運(yùn)算律探究去括號法則,并且利用去括號法則將整式化簡。

(二)過程與方法。

經(jīng)歷類比帶有括號的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號時(shí)的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力。

(三)情感態(tài)度與價(jià)值觀。

培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度。

二、教學(xué)重、難點(diǎn)與關(guān)鍵。

1、重點(diǎn):去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡。

2、難點(diǎn):括號前面是—號去括號時(shí),括號內(nèi)各項(xiàng)變號容易產(chǎn)生錯(cuò)誤。

3、關(guān)鍵:準(zhǔn)確理解去括號法則。

三、教具準(zhǔn)備。

投影儀。

四、教學(xué)過程,課堂引入。

利用合并同類項(xiàng)可以把一個(gè)多項(xiàng)式化簡,在實(shí)際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

五、新授。

現(xiàn)在我們來看本章引言中的問題(3):

在格爾木到拉薩路段,如果列車通過凍土地段要t小時(shí),那么它通過非凍土地段的時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①

凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②

上面的式子①、②都帶有括號,它們應(yīng)如何化簡?

利用分配律,可以去括號,合并同類項(xiàng),得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60