教案一定要注意掌握好教學(xué)節(jié)奏寫(xiě)作才行,教案是教師常用到的一種文件,是為了讓我們的課堂更有紀(jì)律性的材料,以下是范文社小編精心為您推薦的小學(xué)因數(shù)和倍數(shù)的教案6篇,供大家參考。
小學(xué)因數(shù)和倍數(shù)的教案篇1
教學(xué)目標(biāo):
1、 從操作活動(dòng)中理解因數(shù)與倍數(shù)的意義,會(huì)判斷一個(gè)數(shù)不是另一個(gè)數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學(xué)生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點(diǎn)。
3、培養(yǎng)學(xué)生的合作意識(shí)、探索意識(shí),以及熱愛(ài)數(shù)學(xué)學(xué)習(xí)的情感。
教學(xué)重點(diǎn):
理解因數(shù)和倍數(shù)的意義
教學(xué)難點(diǎn):
因數(shù)和倍數(shù)等概念間的聯(lián)系和區(qū)別。
教學(xué)過(guò)程:
一、認(rèn)識(shí)因數(shù)與倍數(shù),預(yù)習(xí)反饋
1、反饋主題圖,根據(jù)主題圖的不同情況寫(xiě)出乘法算式和除法算式。
反饋:
1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3
2、觀察并回答。
(1)這三組乘法、除法算式中,都有什么共同點(diǎn)?
(2)像這樣的乘除法算式中的三個(gè)數(shù)之間還有另一種說(shuō)法,你想知道嗎?
(3)這樣的三個(gè)數(shù),我們也可以怎樣說(shuō)?(2和6是12的因數(shù)),請(qǐng)大家也像這樣把其余的兩組數(shù)也說(shuō)一說(shuō)。
請(qǐng)看教材12頁(yè),2和6與12的關(guān)系還可以怎么說(shuō)?
(4)也就是說(shuō)2和6與12的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組數(shù)中,誰(shuí)和誰(shuí)還有因數(shù)和倍數(shù)的關(guān)系?
(5)提問(wèn):能不能說(shuō)12是12的因數(shù)呢?
(6)小結(jié):上面這三組算式中,我們知道:1、2、3、4、6、12都是12的因數(shù)。
3.討論:23÷4=5……3,提問(wèn):23是4的倍數(shù)嗎?為什么?
誰(shuí)能舉一個(gè)算式例子,并說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)?
4.討論:0×3 0×10 0÷3 0÷10
提問(wèn):通過(guò)剛才的計(jì)算,你有什么發(fā)現(xiàn)?
5.注意:(1)為了方便,在研究因數(shù)和倍數(shù)的時(shí)候,我們所說(shuō)的數(shù)一般指的是整數(shù),但不包括0。(2) 這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說(shuō)的因數(shù)不是以前乘法算式名稱的“因數(shù)”,兩者不能搞混淆。
二、鞏固新知
1.下面每一組數(shù)中,誰(shuí)是誰(shuí)得因數(shù),誰(shuí)是誰(shuí)得倍數(shù)?
16和2 4和24 72和8 20和5
2.下面得說(shuō)法對(duì)嗎?說(shuō)出理由。
(1)48是6的倍數(shù)
(2)在13÷4==3……1中,13是4的倍數(shù)
(3)因?yàn)?×6=18,所以18是倍數(shù),3和6是因數(shù)。
3.在36、4、9、12、3、0這些數(shù)中,誰(shuí)和誰(shuí)有因數(shù)和倍數(shù)關(guān)系。
4、完成p15第2題
學(xué)生自己獨(dú)立完成,講評(píng)時(shí)讓學(xué)生說(shuō)一說(shuō),是怎么想的?
三、思維訓(xùn)練
1、判斷
(1)12的因數(shù)有:1、2、3、4、6、12。
(2)整數(shù)32的因數(shù)共有4個(gè)。
(3)自然數(shù)a的最大因數(shù)是a,最小因數(shù)是1。
(4)一個(gè)數(shù)的因數(shù)都小于這個(gè)數(shù)。
2.游戲。記住自己的學(xué)號(hào),聽(tīng)老師說(shuō)要求,符合要求的同學(xué)請(qǐng)舉手。
(1)( )是4的倍數(shù) (2)( )是60的因數(shù)
(3)( )是5的倍數(shù) (4)( )是36的因數(shù)
四、課后小結(jié):
五、 布置作業(yè)
小學(xué)因數(shù)和倍數(shù)的教案篇2
學(xué)習(xí)內(nèi)容:
人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第17、18頁(yè)。
學(xué)習(xí)目標(biāo):
1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個(gè)數(shù)是不是2、5的倍數(shù)。
2.我知道什么是奇數(shù)和偶數(shù)。
學(xué)習(xí)重點(diǎn):
了解2、5的倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
學(xué)習(xí)難點(diǎn):
能正確地求出符合要求的數(shù)。
學(xué)前準(zhǔn)備:
收集電影票。
教學(xué)過(guò)程:
一、導(dǎo)入新課
二、檢查獨(dú)學(xué)
1.互動(dòng),檢查獨(dú)學(xué)部分第1、2題完成情況。
2.質(zhì)疑探討。
三、合作探究
(一)2、5的倍數(shù)的特征
1.小組合作。
仔細(xì)回顧獨(dú)學(xué)題2,再與同伴分享自己的收獲。
2.小組代表展示匯報(bào)。
3.小組合作交流,驗(yàn)證規(guī)律。
討論:是不是所有2的倍數(shù)個(gè)位上都是0、2、4、6、8?所有5的倍數(shù)個(gè)位上都是5或0呢?
我們的想法:
小組代表匯報(bào)、總結(jié)。
4.試試身手。
(1)獨(dú)立完成第18頁(yè)“做一做”。
(2)集體交流。我又發(fā)現(xiàn)了 :
(二)奇數(shù)和偶數(shù)
1.自主閱讀教材。根據(jù)自學(xué)內(nèi)容,我知道:
根據(jù)是否是2的倍數(shù),可把自然數(shù)分為 和 兩類。是2的倍數(shù)的數(shù)叫做 ,不是2的倍數(shù)的數(shù)叫做 。
2.組內(nèi)交流,并討論:0是不是2的倍數(shù)?為什么?
3.匯報(bào)總結(jié)。
4.我能說(shuō)出身邊的奇數(shù)和偶數(shù)。
5.做一做(第17頁(yè))。
小學(xué)因數(shù)和倍數(shù)的教案篇3
教學(xué)內(nèi)容
教材第17頁(yè)、18頁(yè)內(nèi)容。
教學(xué)目標(biāo)
知識(shí)目標(biāo)
1.使學(xué)生初步掌握2、5的倍數(shù)的特征。
2.使學(xué)生知道奇數(shù)、偶數(shù)的概念。
能力目標(biāo)
1.會(huì)判斷一個(gè)數(shù)是否能被2、5整除。
2.會(huì)判斷奇數(shù)、偶數(shù)。
3.培養(yǎng)類推能力及主動(dòng)獲取知識(shí)的能力。
情感目標(biāo)
激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點(diǎn)
掌握2、5的倍數(shù)的特征及奇數(shù)、偶數(shù)的概念。
教學(xué)難點(diǎn)
靈活運(yùn)用2、5的倍數(shù)的特征及奇數(shù)、偶數(shù)的概念進(jìn)行綜合判斷。
教學(xué)過(guò)程
一、激趣引入 走進(jìn)課堂
1.前面我們學(xué)習(xí)了自然數(shù)、整數(shù)、因數(shù),后來(lái)又學(xué)習(xí)了倍數(shù),我們都說(shuō)自己學(xué)的很棒,今天我就考考大家
出示:1~100的自然數(shù)。
2.導(dǎo)入:
這是1~100的自然數(shù)。
你能很快找出2的所有倍數(shù)嗎,并用藍(lán)筆圈出來(lái)。試一試!
3.同桌結(jié)組,比試結(jié)果。
二、探究新知
1.2的倍數(shù)的特征。
你們?nèi)Τ龅倪@些數(shù)和2有什么聯(lián)系
為什么它們都是2的倍數(shù)
這些數(shù)是分別用2X1 2X2 2X3 2X4 2X5 ……得來(lái)的
請(qǐng)大家觀察這些數(shù),你發(fā)現(xiàn)這些數(shù)有什么特征?
這些數(shù)個(gè)位上是0、2、4、6、8中的一個(gè)。
這個(gè)規(guī)律正確嗎?請(qǐng)同學(xué)們?nèi)螌?xiě)一些大一點(diǎn)的數(shù)驗(yàn)證一下。(學(xué)生寫(xiě)數(shù)驗(yàn)證,小組內(nèi)討論)
學(xué)生匯報(bào),師生共同總結(jié):看來(lái)判斷一個(gè)數(shù)是不是2的倍數(shù),只要看這個(gè)數(shù)的個(gè)數(shù)是不是0、2、4、6、8就可以了。
三、練習(xí) 出示課本第20頁(yè)第一題
自學(xué) 奇數(shù)、偶數(shù)
1、關(guān)于一個(gè)數(shù)是不是2的倍數(shù),還有很多知識(shí),你想知道嗎?請(qǐng)你打開(kāi)課本第17頁(yè)自學(xué)。
你們從書(shū)上還知道了些什么?
自然數(shù)中,是2的倍數(shù)的數(shù)叫做偶數(shù),不是2的倍數(shù)的數(shù)叫做奇數(shù)。
0也是偶數(shù)。(因?yàn)?也是2的倍數(shù),所以也是偶數(shù))
雙數(shù)指的就是偶數(shù),那么單數(shù)指什么呢?
學(xué)生說(shuō):奇數(shù)
2、鞏固練習(xí) 出示課本第17頁(yè)做一做
學(xué)生口答
根據(jù)上面的學(xué)習(xí),你們還能想到哪些數(shù)學(xué)知識(shí)呢?
自然數(shù)根據(jù)是不是2的倍數(shù),可分為奇數(shù)和偶數(shù)。
因?yàn)?、2、4、6、8都是偶數(shù),所以也可以說(shuō)“個(gè)位上是偶數(shù)的數(shù)都是偶數(shù)”。
3、聯(lián)系生活
在生活中,你在哪兒還見(jiàn)過(guò)奇數(shù)和偶數(shù)?
我的身高148厘米,148就是一個(gè)偶數(shù)
2008是個(gè)偶數(shù)
同學(xué)們真有心,在我們的生活中經(jīng)常用奇數(shù)、偶數(shù)對(duì)事物進(jìn)行分類。
看來(lái)奇數(shù)、偶數(shù)給我們的學(xué)習(xí)、生活帶來(lái)不少方便呢。
2、5的倍數(shù)的特征。
自主探索5的倍數(shù)的特征。
在課本上有100以內(nèi)數(shù)的表格,請(qǐng)同學(xué)們打開(kāi)書(shū),找出5的倍數(shù),看看有什么規(guī)律,和你的同桌說(shuō)一說(shuō),并想辦法驗(yàn)證你所發(fā)現(xiàn)的規(guī)律。
師生共同總結(jié):個(gè)位上是0或5的數(shù),是5的倍數(shù)。
3、既是2的倍數(shù),又是5的倍數(shù)的數(shù)的特征
判斷:下面哪些數(shù)是2的倍數(shù)?哪些數(shù)是5的倍數(shù)?哪些數(shù)既是2又是5的倍數(shù)?(60 30)
60、75、106,30,521
①引導(dǎo)學(xué)生思考:一個(gè)數(shù)既是2的倍數(shù)又是5的倍數(shù),這個(gè)數(shù)有什么特征?
②匯報(bào)結(jié)果:說(shuō)說(shuō)你是怎樣判斷的?
③引導(dǎo)總結(jié):個(gè)位上為0的數(shù)既是2的倍數(shù)又是5的倍數(shù)。
三、鞏固發(fā)展:
(1)套圈游戲:把下面的數(shù)填在圈里。
18 24 25 30 35 36 40 42 45 46 50 65 80 100
①2的倍數(shù):
②5的倍數(shù):
③同時(shí)是2和5的倍數(shù):
(2)判斷。
①一個(gè)自然數(shù)不是奇數(shù)就是偶數(shù)。 ( )
②能被2除盡的數(shù)都是偶數(shù)。 ( )
③同時(shí)是2和5倍數(shù)的數(shù),個(gè)位上的數(shù)字一定是0。 ( )
四、全課小結(jié):
這節(jié)課你學(xué)到了哪些知識(shí)?
教學(xué)目標(biāo):
1、通過(guò)動(dòng)手操作和寫(xiě)不同的乘法算式,認(rèn)識(shí)倍數(shù)和因數(shù)。
2、依據(jù)倍數(shù)和因數(shù)的含義和已有的乘除法知識(shí),自主探索并總結(jié)找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法。
3、在探索中,培養(yǎng)學(xué)生抽象,概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點(diǎn)。
教學(xué)重點(diǎn)、難點(diǎn)分析:
由于學(xué)生對(duì)辨析、理清除盡和整除的關(guān)系、整除的兩種讀法等易混淆的概念,使學(xué)生明確了一個(gè)數(shù)是否是另一個(gè)數(shù)的倍數(shù)或因數(shù)時(shí),必須是以整除為前提,因數(shù)和倍數(shù)是相互依存的概念,不能獨(dú)立存在。所以本節(jié)課的教學(xué)我把重點(diǎn)定位于理解因數(shù)和倍數(shù)的含義。教學(xué)難點(diǎn)是自主探索并總結(jié)找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法。
教學(xué)課時(shí):
第一課時(shí)
教具學(xué)具準(zhǔn)備:
1、學(xué)生每人準(zhǔn)備12個(gè)大小完全相同的小正方形,一張寫(xiě)有自己學(xué)號(hào)的卡片。
2、教師準(zhǔn)備多媒體課件。
一、創(chuàng)設(shè)情景,明確探究目標(biāo)
師:人與人之間存在著許多種關(guān)系,我和你們的關(guān)系是……
生:師生關(guān)系。
師:對(duì),我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書(shū)課題:因數(shù)與倍數(shù))
1、操作激活。
師:我們已經(jīng)認(rèn)識(shí)了哪幾類數(shù)?
生:自然數(shù),小數(shù),分?jǐn)?shù)。
師:現(xiàn)在我們來(lái)研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請(qǐng)你們用12個(gè)小正方形擺成不同的長(zhǎng)方形,并根據(jù)擺成的不同情況寫(xiě)出乘、除算式。
2、全班交流。
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點(diǎn)?
生匯報(bào)。
師:(指著第②組)像這樣的乘、除法式子中的三個(gè)數(shù)之間的關(guān)系還有一種說(shuō)法,你們想知道嗎?請(qǐng)看課本p12。
師:2和6與12的關(guān)系還可以怎樣說(shuō)呢?
生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。
師:也就是說(shuō),2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰(shuí)和誰(shuí)還有因數(shù)和倍數(shù)的關(guān)系?
小組合作,交流匯報(bào)。
師:說(shuō)得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數(shù)。
揭示課題:今天我們要根據(jù)這些算式研究數(shù)學(xué)新本領(lǐng)。因數(shù)和倍數(shù)。
師:你能不能用同樣的方法說(shuō)說(shuō)另一道算式?
(指名生說(shuō)一說(shuō))
師:你有沒(méi)有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
3、舉例內(nèi)化:
你能寫(xiě)出一個(gè)算式,讓你的同桌找一找因數(shù)和倍數(shù)嗎?(學(xué)生互說(shuō),教師巡視找出典型例子)
4、下面的說(shuō)法對(duì)嗎?說(shuō)出理由。
(1)48是6的倍數(shù)。
(2)在13÷4=3……1中,13是4的倍數(shù)。
(3)因?yàn)?×6=18,所以18是倍數(shù),3和6是因數(shù)。
師:第(3)題有兩種不同的意見(jiàn),請(qǐng)反對(duì)意見(jiàn)的同學(xué)說(shuō)說(shuō)理由。
生:因?yàn)闆](méi)有說(shuō)明18是誰(shuí)的倍數(shù),所以不對(duì)。
師:你認(rèn)為怎樣說(shuō)才正確呢?
生:我認(rèn)為應(yīng)該這么說(shuō):18是3和6的倍數(shù),3和6是18的因數(shù)。
師強(qiáng)調(diào):在說(shuō)倍數(shù)(或因數(shù))時(shí),必須說(shuō)明誰(shuí)是誰(shuí)的倍數(shù)(或因數(shù))。不能單獨(dú)說(shuō)誰(shuí)是倍數(shù)(或因數(shù)),也就是說(shuō):因數(shù)和倍數(shù)不能單獨(dú)存在。
二、自主探究,找因數(shù)和倍數(shù)
1、拓展提升,主動(dòng)建構(gòu):
⑴遷移嘗試:請(qǐng)學(xué)生試著找出36的所有因數(shù)。
⑵交流方法:教師即時(shí)捕捉開(kāi)發(fā)學(xué)生在課堂上的基礎(chǔ)性教學(xué)資源,并及時(shí)創(chuàng)生為生成性的教學(xué)資源,引導(dǎo)學(xué)生在交流中評(píng)價(jià),在評(píng)價(jià)中探究,在發(fā)現(xiàn)中建構(gòu)。預(yù)計(jì)學(xué)生會(huì)有這樣幾種情況出現(xiàn):一是寫(xiě)得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無(wú)序、沒(méi)有方法地寫(xiě)出了一些,如2,3,6,而且僅此寫(xiě)出了幾個(gè);二是有順序地用乘法( )×( )=36的方法,一對(duì)一對(duì)地寫(xiě)出了1,36,2,18,3,12,4,9,6,但沒(méi)有按照從小到大的順序?qū)懀蝗怯贸?6÷( )=( )的方法想,而且是有順序地從小到大全部寫(xiě)出: 1,2,3,4,6,9,12,18,36。
⑶啟迪思考:怎樣找才能不重復(fù)不遺漏?
小組合作,自主探究,匯報(bào)交流。
找一個(gè)數(shù)的因數(shù)時(shí)要做到不重復(fù)也不遺漏,方法可以有:
用乘法( )×( )=36的方法,一對(duì)一對(duì)地寫(xiě);
或者是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫(xiě)。
36的因數(shù)有:1,2,3,4,6,9,12,18,36。(板書(shū))
⑷試一試找20的所有因數(shù)。
⑸介紹36的因數(shù)的另一種寫(xiě)法----集合
用集合形式寫(xiě)18的因數(shù)
2、創(chuàng)設(shè)情境,自主探究:
請(qǐng)學(xué)生寫(xiě)出6的倍數(shù)。預(yù)計(jì)學(xué)生在寫(xiě)6的倍數(shù)時(shí),會(huì)有這樣幾種情況出現(xiàn):一是寫(xiě)得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無(wú)序、沒(méi)有方法地寫(xiě)出了一些,6二是有順序地用乘法口訣寫(xiě)6,三是用加法的方法,每次遞加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法寫(xiě)。同時(shí)可能還會(huì)有學(xué)生在教師宣布時(shí)間到的時(shí)候會(huì)因?yàn)?的倍數(shù)寫(xiě)不完而抱怨時(shí)間太少。
請(qǐng)寫(xiě)得又多又快的同學(xué)介紹自己的好方法、小竅門(mén)。在此基礎(chǔ)上交流評(píng)價(jià)小結(jié)方法。(評(píng)價(jià)時(shí)突出有序思維的策略)
3、遷移內(nèi)化,自主探究:
⑴嘗試遷移:請(qǐng)學(xué)生嘗試遷移,用自己喜歡的方法寫(xiě)出2的倍數(shù)和5,4,7的倍數(shù)。
2的倍數(shù)有:2,4,6,8,10,12……
5的倍數(shù)有:5,10,15,20,25……
⑵引導(dǎo)觀察:請(qǐng)學(xué)生觀察以上這些數(shù)的倍數(shù),有什么發(fā)現(xiàn)?
(一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的,一個(gè)數(shù)最小的倍數(shù)是它本身。)
(3)還記得因數(shù)嗎,出示課件
觀察:看一看這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)?(36最小的因數(shù)是1,最大的是36,……一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身。)
三、變式拓展,實(shí)踐應(yīng)用
指導(dǎo)學(xué)生做書(shū)本“練習(xí)二”的第2題和第3題。
四、全課總結(jié)
師:今天這節(jié)課我們一起學(xué)習(xí)了“約數(shù)和倍數(shù)”,你有哪些收獲?
課堂練習(xí):游戲:“我的朋友在哪里?”
游戲規(guī)則:
(1)一位同學(xué)提出所要找的朋友的要求,例:“我的因數(shù)在哪里?”或“我的倍數(shù)在哪里?”
(2)相應(yīng)學(xué)號(hào)的同學(xué)站起來(lái),其他同學(xué)判斷是否正確。
作業(yè)安排:
引導(dǎo)學(xué)生根據(jù)實(shí)際猜老師年齡,給出范圍:老師的年齡既是2的倍數(shù)也是5的倍數(shù)
小學(xué)因數(shù)和倍數(shù)的教案篇4
一、談話導(dǎo)入,激發(fā)興趣
1、回顧學(xué)過(guò)的數(shù)
2、明確學(xué)習(xí)主題
二、自主學(xué)習(xí),探究新知
1、自主學(xué)習(xí)
自學(xué)指導(dǎo):閱讀課本p12和p13例1
(1)2脳6=12,表示的意義是什么?在這個(gè)乘法算式中,誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)?
(2)想一想:什么情況下,兩個(gè)不是零的自然數(shù)之間是因數(shù)(倍數(shù))的關(guān)系?
(3)怎樣找出18的全部因數(shù)?你是怎樣想的?
怎樣表示出18的因數(shù)?
要求:1、獨(dú)立學(xué)習(xí)
2、時(shí)間6分鐘
3、全班交流
問(wèn)題一:初建模型
在圖式結(jié)合中構(gòu)建因數(shù)、倍數(shù)的概念,并從中感受因數(shù)和倍數(shù)是相互依存的,有著互逆關(guān)系的一組概念。
問(wèn)題二:深化模型
明確因數(shù)與倍數(shù)的外延,進(jìn)一步認(rèn)識(shí)、內(nèi)化因數(shù)、倍數(shù)的內(nèi)涵,從中提煉出因數(shù)、倍數(shù)模型的本質(zhì)意義。
ab=c(a、b、c為非零自然數(shù))
問(wèn)題三:應(yīng)用模型
①交流找一個(gè)數(shù)的因數(shù)的方法及表示方法。
②找30、36的因數(shù)。
3、議一議
(1)今天學(xué)習(xí)的因數(shù)與乘法算式中的因數(shù)一樣嗎?倍數(shù)與倍一樣嗎?
(2)通過(guò)找一個(gè)數(shù)的因數(shù),你有什么發(fā)現(xiàn)?
三、檢測(cè)反饋,拓展運(yùn)用
四、板書(shū)設(shè)計(jì)
因數(shù)和倍數(shù)
2脳6=12
2和6是12的因數(shù)。
12是2和6的倍數(shù)。
3脳4=12
ab=c(a、b、c為非零自然數(shù))
a和b是c的因數(shù),c是a和b的倍數(shù)。
?人教版:五年級(jí)下冊(cè)《因數(shù)與倍數(shù)》教學(xué)設(shè)計(jì)》
小學(xué)因數(shù)和倍數(shù)的教案篇5
【知識(shí)點(diǎn)講解和梳理】
一、數(shù)的世界
1、認(rèn)識(shí)自然數(shù)和整數(shù),聯(lián)系乘法認(rèn)識(shí)倍數(shù)與因數(shù)。
整數(shù):如-3,-2,-1,0,1,2,3,4……這樣的數(shù)叫做整數(shù)。
自然數(shù):如0,1,2,3,4,5……這樣的數(shù)叫做自然數(shù)。
2、我們只在自然數(shù)(零除外)范圍內(nèi)研究倍數(shù)和因數(shù)。
3、倍數(shù)與因數(shù)是相互依存的關(guān)系,要說(shuō)清誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。補(bǔ)充【知識(shí)點(diǎn)】:一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
二、2,5的倍數(shù)的特征
1、2的倍數(shù)的特征。個(gè)位上是0,2,4,6,8的數(shù)是2的倍數(shù)。
2、5的倍數(shù)的特征。個(gè)位上是0或5的數(shù)是5的倍數(shù)。
3、偶數(shù)和奇數(shù)的定義。是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫奇數(shù)。
4、能判斷一個(gè)數(shù)是不是2或5的倍數(shù)。
5.、能判斷一個(gè)非
零自然數(shù)是奇數(shù)或偶數(shù)。
補(bǔ)充【知識(shí)點(diǎn)】:既是2的倍數(shù),又是5的倍數(shù)的特征:個(gè)位上是0的數(shù)既是2的倍數(shù),又是5的倍數(shù)。
三、3的倍數(shù)的特征
1、3的倍數(shù)的特征。
一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。
2、能判斷一個(gè)數(shù)是不是3的倍數(shù)。
補(bǔ)充【知識(shí)點(diǎn)】:
1、同時(shí)是2和3的倍數(shù)的特征:個(gè)位上的數(shù)是0,2,4,6,8,并且各個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2的倍數(shù),又是3的倍數(shù)。
2、同時(shí)是3和5的倍數(shù)的特征:個(gè)位上的數(shù)是0或5,并且各個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是3的倍數(shù),又是5的倍數(shù)。
3、同時(shí)是2,3和5的倍數(shù)的特征。個(gè)位上的數(shù)是0,并且各個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2和5的倍數(shù),又是3的倍數(shù)。
四、找因數(shù)
在1~100的自然數(shù)中,找出某個(gè)自然數(shù)的所有因數(shù)。
方法:運(yùn)用乘法算式,思考:哪兩個(gè)數(shù)相乘等于這個(gè)自然數(shù)。找一個(gè)數(shù)的因數(shù),就是看它可以由哪兩個(gè)因數(shù)相乘得到
補(bǔ)充【知識(shí)點(diǎn)】:一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的。其中最小的因數(shù)是1,最大的因數(shù)是它本身。
五、找質(zhì)數(shù)
1、理解質(zhì)數(shù)與合數(shù)的意義。
按因數(shù)的個(gè)數(shù)分類:大于1的自然數(shù)可以分為(質(zhì)數(shù))和(合數(shù))。
一個(gè)數(shù)只有1和它本身兩個(gè)因數(shù),這個(gè)數(shù)叫作質(zhì)數(shù)。
一個(gè)數(shù)除了1和它本身以外還有別的因數(shù),這個(gè)數(shù)叫作合數(shù)。
2、1既不是質(zhì)數(shù)也不是合數(shù)。
3、判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù)的方法:
一般來(lái)說(shuō),首先可以用“2,5,3的倍數(shù)的特征”判斷這個(gè)數(shù)是否有因數(shù)2,5,3;如果還無(wú)法判斷,
則可以用7,11等比較小的質(zhì)數(shù)去試除,看有沒(méi)有因數(shù)7,11等。只要找到一個(gè)1和它本身以外的因數(shù),就能肯定這個(gè)數(shù)是合數(shù)。如果除了1和它本身找不到其他因數(shù),這個(gè)數(shù)就是質(zhì)數(shù)。
4、100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、、79、83、89、97。
補(bǔ)充【知識(shí)點(diǎn)】既是質(zhì)數(shù),又是偶數(shù)的自然數(shù)(2);既是質(zhì)數(shù),又是奇數(shù)的最小數(shù)(3)
既不是質(zhì)數(shù),又不是合數(shù)的數(shù)(1);既是偶數(shù),又是合數(shù)的最小數(shù)(4)
既是奇數(shù)又是合數(shù)的最小數(shù)(9);最大的一位合數(shù),還是偶數(shù)(8)
六、數(shù)的奇偶性
1、運(yùn)用“列表”“畫(huà)示意圖”等方法發(fā)現(xiàn)規(guī)律:
小船最初在南岸,從南岸駛向北岸,再?gòu)谋卑恶偦啬习叮粩嗤?。通過(guò)“列表”“畫(huà)示意圖”的方法會(huì)發(fā)現(xiàn)“奇數(shù)次在北岸,偶數(shù)次在南岸”的規(guī)律。
2、能夠運(yùn)用上面發(fā)現(xiàn)的數(shù)的奇偶性解決生活中的一些簡(jiǎn)單問(wèn)題。
3、通過(guò)計(jì)算發(fā)現(xiàn)奇數(shù)、偶數(shù)相加奇偶性變化的規(guī)律:
偶數(shù)+偶數(shù)=偶數(shù)奇數(shù)+奇數(shù)=偶數(shù)偶數(shù)+奇數(shù)=奇數(shù)
補(bǔ)充【知識(shí)點(diǎn)】:
大于2的偶數(shù)都是合數(shù)。(√)
所有的質(zhì)數(shù)都是奇數(shù)。如:2(×)
一個(gè)數(shù)最小的倍數(shù)和最大的因數(shù)都是它本身。(√)
兩個(gè)相鄰的自然數(shù)必定一質(zhì)一合。如:2和3(×)
最小的質(zhì)數(shù)是2,最小的合數(shù)是4,最小的偶數(shù)是0,最小的奇數(shù)是1
(√)兩個(gè)連續(xù)的自然數(shù)都是質(zhì)數(shù),這兩個(gè)數(shù)是2和3(√)
兩個(gè)質(zhì)數(shù)的積一定是合數(shù)(√)
兩個(gè)質(zhì)數(shù)的和,可能是質(zhì)數(shù),也可能是合數(shù)。如2+3=53+5=8(√)
奇數(shù)+奇數(shù)=偶數(shù)奇數(shù)+偶數(shù)=奇數(shù)(√)
【重點(diǎn)知識(shí)歸納及講解】
1、公約數(shù)、最大公約數(shù)和互質(zhì)數(shù)的意義
(1)公約數(shù)的意義。幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù)。
如:12和18的公約數(shù)有:1、2、3、6.
(2)最大公約數(shù)的意義。幾個(gè)數(shù)的公約數(shù)中最大的一個(gè),叫這幾個(gè)數(shù)的最大公約數(shù)。如:12和18的最大公約數(shù)是6.
(3)互質(zhì)數(shù)的意義。公約數(shù)只有1的'兩個(gè)數(shù),叫做互質(zhì)數(shù)。如:3和8是互質(zhì)數(shù),15和16也是互質(zhì)數(shù)。
①成為互質(zhì)數(shù)的兩個(gè)數(shù),不限定必須是質(zhì)數(shù)。
②質(zhì)數(shù)和互質(zhì)數(shù)的意義不同。質(zhì)數(shù)是就一個(gè)數(shù)說(shuō)的,互質(zhì)數(shù)是就兩個(gè)數(shù)的關(guān)系說(shuō)的。
2、注意:求兩個(gè)數(shù)的最大公約數(shù)的兩種特殊情況。
①如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個(gè)數(shù)的最大公約數(shù)。如:15和45的最大公約數(shù)是15。
②如果兩個(gè)數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。如:8和15的最大公約數(shù)是1。
3、解題技巧指點(diǎn):
(1)求幾個(gè)數(shù)的最大公約數(shù)時(shí),要正確地理解和運(yùn)用“最大公約數(shù)乘半邊”這一規(guī)律,即求最大公約數(shù)時(shí),要把所有的除數(shù)都乘起來(lái)。
(2)用短除法求兩個(gè)數(shù)的公約數(shù)時(shí),不一定要用最小的質(zhì)數(shù)去除,也可以用較大的合數(shù)甚至是最大的公約數(shù)去除。
(3)用短除法求兩個(gè)數(shù)的最大公約數(shù)時(shí),最后的兩個(gè)商一定要是互質(zhì)數(shù),否則,求得的結(jié)果就不是最大公約數(shù)。
(4)正確判斷是求已知幾個(gè)數(shù)的最大公約數(shù)還是求最小公倍數(shù)是應(yīng)用題的解題關(guān)鍵。技巧是:如果所求的數(shù)能夠整除幾個(gè)已知同類數(shù),是求最大公約數(shù)的問(wèn)題;如果所求數(shù)必須能同時(shí)被已知幾個(gè)同類數(shù)整除,是求最小公倍數(shù)問(wèn)題。如:
①用某數(shù)去除23、32結(jié)果都余2,問(wèn)這個(gè)數(shù)最大是多少?(求最大公約數(shù)問(wèn)題)
②某班同學(xué)如果每8人一組,或是每12人一組,結(jié)果都差3人,求某班學(xué)生最少有多少人?(求最小公倍數(shù)問(wèn)題)
4、求兩個(gè)數(shù)最小公倍數(shù)的兩種特殊情況。
(1)如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個(gè)數(shù)的最小公倍數(shù),如:12和6的最小公倍數(shù)是12。
(2)如果兩個(gè)數(shù)是互質(zhì)數(shù),那么這兩個(gè)數(shù)的積就是它們的最小公倍數(shù)。
5、求三個(gè)數(shù)的最小公倍數(shù)的方法。
先用三個(gè)數(shù)的公有質(zhì)因數(shù)去除,當(dāng)三個(gè)數(shù)公有的質(zhì)因數(shù)都找盡以后,再用任何兩個(gè)數(shù)的公有質(zhì)因數(shù)去除,把不能整除的那個(gè)數(shù)移下來(lái),寫(xiě)在商的位置上,一直除到最后的三個(gè)商每?jī)蓚€(gè)數(shù)都是互質(zhì)數(shù)(兩兩互質(zhì))為止。再把所有的除數(shù)和商都乘起來(lái)。
例1、求18和30的最大公約數(shù)。
分析:
用短除法求兩個(gè)數(shù)的最大公約數(shù)。一般先用這兩個(gè)數(shù)公有的質(zhì)因數(shù)連續(xù)去除,一直除到所得的商是互質(zhì)數(shù)為止,然后把所有的除數(shù)連乘起來(lái)。
解:
3、求最大公約數(shù)的實(shí)際應(yīng)用。
例2、有兩根木料,一根長(zhǎng)12米,另一根長(zhǎng)18米,現(xiàn)在要把它們截成相等的小段,每根不許有剩余,每小段最長(zhǎng)是多少?一共可以截成多少段?
分析:
這里求每小段最長(zhǎng)是多少米,就是求12和18的最大公約數(shù)。
2+3=5(段)
答:每小段最長(zhǎng)6米,一共可以截5段。
4、求兩個(gè)數(shù)的最小公倍數(shù)的方法。
例3、求18和30的最小公倍數(shù)。
分析:
用短除法求兩個(gè)數(shù)的最小公倍數(shù)。一般先用這兩個(gè)數(shù)公有的質(zhì)因數(shù)連續(xù)去除,一直除到所得的商是互質(zhì)數(shù)為止,然后把所有的除數(shù)和商連乘起來(lái)。
答:18和30的最小公倍數(shù)是2×3×3×5=90.
5、求最小公倍數(shù)的實(shí)際應(yīng)用。
例4、一些小朋友分組做游戲,第一次分組每組4人余下2人,第二次分組每組5人也余下2人,第三次分組每組6人還是余下2人。問(wèn)最少有多少名小朋友做游戲?
分析:
根據(jù)題意,要求最少有多少名小朋友做游戲,就是在求出4、5、6這三個(gè)數(shù)的最小公倍數(shù)后,再加上2。
第九單元倍數(shù)和因數(shù)
知識(shí)點(diǎn):因數(shù)和倍數(shù)的含義
練習(xí):1、4×3=12,()是()的因數(shù),()是()的倍數(shù)。
2、3×6=18,所以3是因數(shù),18是倍數(shù)。()【判斷】
3、因?yàn)?2÷()=(),所以20是()和()的倍數(shù)?!咎羁铡?/p>
知識(shí)點(diǎn):求一個(gè)數(shù)的因數(shù)和倍數(shù)
練習(xí):1、一個(gè)數(shù)最小的因數(shù)是(),最大的因數(shù)是(),一個(gè)數(shù)因數(shù)的個(gè)數(shù)是()的。如18的最小因數(shù)是(),最大因數(shù)是()?!咎羁铡?/p>
2、一個(gè)數(shù)最小的倍數(shù)是它(),()最大的倍數(shù)。一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是()的。如:4的最小倍數(shù)是()。
3、寫(xiě)出7的倍數(shù):(),40以內(nèi)6的倍數(shù)(,30的因數(shù)()。91的因數(shù)()。
4、在4、6、8、12、16、18、20、24這八個(gè)數(shù)中,4的倍數(shù)有(),
6的倍數(shù)有(),既是4的倍數(shù)又是6的倍數(shù)有()。【填空】
5、在1、2、3、4、6、12、18這些數(shù)中,12的因數(shù)有(),18的因數(shù)有(),既是12的因數(shù)又是18的因數(shù)有()。【填空】
6、一個(gè)數(shù)既是40的因數(shù),又是5的倍數(shù),這個(gè)數(shù)可能是()?!咎羁铡?/p>
7、一個(gè)數(shù)的最小倍數(shù)減去它的最大因數(shù),差是()。一個(gè)數(shù)的最小倍數(shù)除以它的最大因數(shù),商是()。
8、如果a的最大因數(shù)是17,b的最小倍數(shù)是1,則a+b的和的所有因數(shù)有()個(gè);a-b的差的所有因數(shù)有()個(gè);a×b的積的所有因數(shù)有()個(gè)。【填空】
9、一個(gè)數(shù)的最大因數(shù)是17,最小倍數(shù)是17,這個(gè)數(shù)是()。【填空】
練習(xí):1、個(gè)位上是()的數(shù),都能被2整除;個(gè)位上是()的數(shù),都能被5整除?!咎羁铡?/p>
2、在18、29、45、30、17、72、58、43、75、100中,2的倍數(shù)有();3的倍數(shù)有();5的倍數(shù)有(),既是2的倍數(shù)又是5的倍數(shù)有(),既是3的倍數(shù)又是5的倍數(shù)有()?!咎羁铡?/p>
3、按要求做。從0、3、5、7、這4個(gè)數(shù)中,選出三個(gè)組成三位數(shù)?!咎羁铡?/p>
(1)組成的數(shù)是2的倍數(shù)有:
(2)組成的數(shù)是5的倍數(shù)有:。
(3)組成的數(shù)是3的倍數(shù)有:。
4、不計(jì)算,判斷哪幾道題的結(jié)果沒(méi)有余數(shù)?!具x擇】
48÷3□57÷3□342÷3□567÷3□802÷3□
5、要使7□這個(gè)兩位數(shù)是3的倍數(shù),□里可以填();三位數(shù)□12是3的倍數(shù),□里可以填();三位數(shù)3□5是3的倍數(shù),□里可以填()。
6、3的倍數(shù)都是9的倍數(shù),9的倍數(shù)都是3的倍數(shù)。()【判斷】
7、任何奇數(shù)加上1后都是2的倍數(shù)。()【判斷】
8、個(gè)位上是3、6、9的數(shù)都是3的倍數(shù)。()【判斷】
9、671至少加上()或減(),所得的自然數(shù)就是3的倍數(shù)。【填空】
10、同時(shí)是2和5倍數(shù)的數(shù),最小兩位數(shù)是(),最大兩位數(shù)是()。
11、同時(shí)是2、3、5的倍數(shù)的數(shù),最小是(),最小的三位數(shù)是()
12、4的倍數(shù)都是2的倍數(shù),2的倍數(shù)都是4的倍數(shù)。()【判斷】
13、12□既是2的倍數(shù),又是3的倍數(shù),□可以填()【填空】
14、一個(gè)數(shù)既是2的倍數(shù),又是3的倍數(shù),這個(gè)數(shù)是()的倍數(shù),一個(gè)數(shù)既是2的倍數(shù),又是5的倍數(shù),這個(gè)數(shù)是()的倍數(shù),一個(gè)數(shù)既是3的倍數(shù),又是5的倍數(shù),這個(gè)數(shù)是()的倍數(shù).
知識(shí)點(diǎn):奇數(shù)、偶數(shù)、素?cái)?shù)和合數(shù)
練習(xí):1、在27、68、44、72、587、602、431、800中。【填空】
奇數(shù)是:,偶數(shù)是:。
2、在2、3、45、10、22、17、51、91、93、97中?!咎羁铡?/p>
質(zhì)數(shù)是:,合數(shù)是:。
3、在自然數(shù)中,最小的奇數(shù)是(),最小的質(zhì)數(shù)是(),最小的合數(shù)是()。【填空】
4、質(zhì)數(shù)只有()個(gè)因數(shù),它們分別是()和()。一個(gè)合數(shù)至少有()個(gè)因數(shù),()既不是質(zhì)數(shù),也不是合數(shù)。自然數(shù)中,既是質(zhì)數(shù)又是偶數(shù)的是()?!咎羁铡?/p>
5、在1—20的自然數(shù)中,奇數(shù)有(),偶數(shù)有()素?cái)?shù)有(),合數(shù)有()。既是奇數(shù)又是合數(shù)的數(shù)是(),連續(xù)的兩個(gè)合數(shù)是()?!咎羁铡?/p>
6、素?cái)?shù)都是奇數(shù),合數(shù)都是偶數(shù)。()【判斷】
7、三個(gè)連續(xù)自然數(shù),連續(xù)奇數(shù),連續(xù)偶數(shù)的和都是3的倍數(shù)。()【判斷】
8、下面是銀湖小學(xué)四年級(jí)各班人數(shù)。()個(gè)班可以分成人數(shù)相等的小組,()個(gè)班不可以分成人數(shù)相等的小組。
9、按要求寫(xiě)出兩個(gè)連續(xù)的自然數(shù)?!咎羁铡?/p>
(1)兩個(gè)數(shù)都是素?cái)?shù):()和()。
(2)兩個(gè)數(shù)都是合數(shù):()和()。
(3)一個(gè)數(shù)是素?cái)?shù)、一個(gè)數(shù)是合數(shù):()和()。
小學(xué)因數(shù)和倍數(shù)的教案篇6
[教學(xué)內(nèi)容]
數(shù)的奇偶性
[教學(xué)目標(biāo)]
1、嘗試用“列表”“畫(huà)示意圖”等解決問(wèn)題的策略發(fā)現(xiàn)規(guī)律,運(yùn)用數(shù)的奇偶性解決生活中的一些簡(jiǎn)單問(wèn)題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過(guò)程,在活動(dòng)中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動(dòng)中體驗(yàn)研究的方法,提高推理能力。
[教學(xué)重、難點(diǎn)]
1、嘗試用“列表”“畫(huà)示意圖”等解決問(wèn)題的策略發(fā)現(xiàn)規(guī)律,運(yùn)用數(shù)的奇偶性解決生活中的一些簡(jiǎn)單問(wèn)題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過(guò)程,在活動(dòng)中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動(dòng)中體驗(yàn)研究的方法,提高推理能力。
[教學(xué)過(guò)程]
活動(dòng)1:利用數(shù)的奇偶性解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
讓學(xué)生嘗試解決問(wèn)題,尋找解決問(wèn)題的策略,利用解決問(wèn)題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進(jìn)行“列表”“畫(huà)示意圖”等解決問(wèn)題策略的指導(dǎo)。
試一試:
本題是讓學(xué)生應(yīng)用上述活動(dòng)中解決問(wèn)題的策略嘗試自己解決問(wèn)題,最后的結(jié)果是:翻動(dòng)10次,杯口朝上;翻動(dòng)19次,杯口朝下。解決問(wèn)題后,讓學(xué)生以“硬幣”為題材,自己提出問(wèn)題、解決問(wèn)題,還可以開(kāi)展游戲活動(dòng)。
活動(dòng)2:探索奇數(shù)、偶數(shù)相加的規(guī)律
先研究“偶數(shù)+偶數(shù)”的規(guī)律,在經(jīng)歷“列式計(jì)算—初步得出結(jié)論—舉例驗(yàn)證—得出結(jié)論”的過(guò)程后,再引導(dǎo)學(xué)生用這樣的研究方式探索“奇數(shù)+奇數(shù)”“奇數(shù)+偶數(shù)”的奇偶性變化規(guī)律,最后讓學(xué)生應(yīng)用結(jié)論判斷計(jì)算結(jié)果是奇數(shù)還是偶數(shù)。還可以引導(dǎo)學(xué)生研究減法中奇偶性的變化規(guī)律
偶數(shù)+偶數(shù)=偶數(shù)
奇數(shù)+奇數(shù)=偶數(shù)
偶數(shù)+奇數(shù)=奇數(shù)
[板書(shū)設(shè)計(jì)]
數(shù)的奇偶性
例子: 結(jié)論:
12 + 34 = 48 偶數(shù)+偶數(shù)=偶數(shù)
11 + 37 =48 奇數(shù)+奇數(shù)=偶數(shù)
12 + 11 =23 奇數(shù)+偶數(shù)=奇數(shù)
教學(xué)目標(biāo):
1、使學(xué)生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識(shí),通過(guò)嘗試、交流等活動(dòng),探索并掌握找一個(gè)數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個(gè)數(shù)的所有倍數(shù),找出100以內(nèi)某個(gè)數(shù)的所有因數(shù)。
3、使學(xué)生在認(rèn)識(shí)倍數(shù)和因數(shù)以及找一個(gè)數(shù)的倍數(shù)和因數(shù)的過(guò)程中進(jìn)一步感受數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
教學(xué)重點(diǎn):
理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。
教學(xué)難點(diǎn):
探索并掌握找一個(gè)數(shù)的因數(shù)的方法。
教學(xué)準(zhǔn)備:
12個(gè)小正方形片、每個(gè)學(xué)生的學(xué)號(hào)紙。
教學(xué)過(guò)程設(shè)計(jì):
一、認(rèn)識(shí)倍數(shù)、因數(shù)的含義
1、操作活動(dòng)。
(1)明確操作要求:用12個(gè)同樣大的正方形拼成一個(gè)長(zhǎng)方形。每排擺幾個(gè)?擺了幾排?用乘法算式把自己的擺法記錄下來(lái)。
(2)整理、交流,分別板書(shū)4×3=1212×1=126×2=12
2、通過(guò)剛才的學(xué)習(xí),我們發(fā)現(xiàn)用12個(gè)同樣的小正方形可以擺出3種不同的長(zhǎng)方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說(shuō)12是4的倍數(shù),12也是3的倍數(shù);反過(guò)來(lái),4和3都是12的因數(shù)。
3、今天我們就來(lái)研究倍數(shù)和因數(shù)的知識(shí)。
(揭示課題:倍數(shù)和因數(shù))
(1)那其它兩道算式,你能說(shuō)出誰(shuí)是誰(shuí)的倍數(shù)嗎?你能說(shuō)出誰(shuí)是誰(shuí)的因數(shù)嗎?
指名回答后,教師追問(wèn):如果說(shuō)12是倍數(shù),2是因數(shù),是否可以?為什么?
小結(jié):倍數(shù)和因數(shù)是指兩個(gè)數(shù)之間的關(guān)系,他們是相互依存的。
(2)出示:20×3=60,36÷4=9。同桌相互說(shuō)一說(shuō)誰(shuí)是誰(shuí)的倍數(shù)?誰(shuí)是誰(shuí)的因數(shù)?
指出:為了方便,我們?cè)谘芯勘稊?shù)和因數(shù)時(shí),所說(shuō)的數(shù)都是指不是0的自然數(shù)。
二、探索找一個(gè)數(shù)倍數(shù)的方法。
1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個(gè)?同桌交流自己的思考方法。
2、提問(wèn):什么樣的數(shù)是3的倍數(shù)?你能按從小到大的順序有條理的說(shuō)出3的倍數(shù)嗎?能全部說(shuō)完嗎?可以怎么表示?
3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門(mén)?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。
4、試一試:你能用學(xué)會(huì)的竅門(mén)很快地寫(xiě)出2和5的倍數(shù)嗎?
生獨(dú)立完成,集體交流。注意用……表示結(jié)果。
5、觀察上面的3個(gè)例子,你發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)?
根據(jù)學(xué)生的交流歸納:一個(gè)數(shù)的倍數(shù)中,最小的是它本身,沒(méi)有最大的倍數(shù),一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無(wú)限的。
6、做“想想做做”第2題。
學(xué)生填表后討論:表中的應(yīng)付元數(shù)是怎么算的?有什么共同特點(diǎn)?你還能說(shuō)出4的哪些倍數(shù)?說(shuō)的完嗎?
二、探索求一個(gè)數(shù)因數(shù)的方法。
1、學(xué)會(huì)了找一個(gè)數(shù)倍數(shù)的方法,再來(lái)研究求一個(gè)數(shù)的因數(shù)。
你能找出36的所有因數(shù)嗎?
2、小組合作,把36的所有因數(shù)一個(gè)不漏的寫(xiě)出來(lái),看看哪個(gè)組挑戰(zhàn)成功。并盡可能把找的方法寫(xiě)出來(lái)。教師巡視,發(fā)現(xiàn)不同的找法。
3、出示一份作業(yè):對(duì)照自己找出的36的因數(shù),你想對(duì)他說(shuō)點(diǎn)什么?
4、交流整理找36因數(shù)的方法,明確:哪兩個(gè)數(shù)相乘的積等于36,那么這兩個(gè)數(shù)就是36的因數(shù)。(一對(duì)一對(duì)地找,又要按次序排列)
板書(shū):(有序、全面)。正因?yàn)樗伎嫉挠行?,才?huì)有答案的全面。
5、試一試:請(qǐng)你用有序的思考找一找15和16的因數(shù)。
指名寫(xiě)在黑板上。
6、觀察發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的特點(diǎn)。
一個(gè)數(shù)的因數(shù)最小是1,最大是它本身,一個(gè)數(shù)因數(shù)的個(gè)數(shù)是有限的。
7、“想想做做”第3題。
生獨(dú)立填寫(xiě),交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。
四、課堂總結(jié):學(xué)到這兒,你有哪些收獲?
五、游戲:“看誰(shuí)反應(yīng)快”。
規(guī)則:學(xué)號(hào)符合下面要求的請(qǐng)站起來(lái),并舉起學(xué)號(hào)紙。
(1)學(xué)號(hào)是5的倍數(shù)的。
(2)誰(shuí)的學(xué)號(hào)是24的因數(shù)。
(3)學(xué)號(hào)是30的因數(shù)。
(4)誰(shuí)的學(xué)號(hào)是1的倍數(shù)。
思考:
1、倍數(shù)和因數(shù)是一個(gè)比較抽象的知識(shí),教學(xué)中讓學(xué)生擺出圖形,通過(guò)乘法算式來(lái)認(rèn)識(shí)倍數(shù)和因數(shù)。用12個(gè)同樣大的正方形拼一個(gè)長(zhǎng)方形,觀察長(zhǎng)方形的擺法,再用乘法算式表示出來(lái),組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識(shí)出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會(huì)其意義
2、在得出這些乘法算式以后,先根據(jù)4×3=12說(shuō)明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會(huì)倍數(shù)和因數(shù)的含義。在學(xué)生初
步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說(shuō)一說(shuō)。在這一個(gè)環(huán)節(jié)中,我設(shè)計(jì)了一個(gè)練習(xí)。即“根據(jù)下面的算式,同桌互相說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”第一個(gè)是20×3=60,根據(jù)學(xué)生回答后質(zhì)疑“能不能說(shuō)3是因數(shù),60是倍數(shù)”,從而強(qiáng)調(diào)倍數(shù)和因數(shù)是相互依存的。第二個(gè)是36÷4=9,讓學(xué)生根據(jù)除法算式說(shuō)出誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù),并追問(wèn):你是怎么想的?使學(xué)生知道把它轉(zhuǎn)化為乘法算式去說(shuō)。
在學(xué)生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說(shuō)明:我們?cè)谘芯勘稊?shù)和因數(shù)時(shí),所說(shuō)的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。
3、p71例一:找3的倍數(shù),先讓學(xué)生獨(dú)立思考,“你還能再寫(xiě)出幾個(gè)3的倍數(shù)?你是怎樣想的?”在學(xué)生交流的基礎(chǔ)上,適時(shí)提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說(shuō)出3的倍數(shù)嗎?使學(xué)生明確:找3的倍數(shù)時(shí),可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)一步思考:你能把3的倍數(shù)全都說(shuō)完嗎?從而使學(xué)生學(xué)會(huì)規(guī)范地表示一個(gè)數(shù)的所有倍數(shù),并初步體會(huì)到一個(gè)數(shù)的個(gè)數(shù)是無(wú)限的。隨后,讓學(xué)生試著找出2和5的倍數(shù),并正確表達(dá)2和5的所有倍數(shù)。最后引導(dǎo)學(xué)生觀察寫(xiě)出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)的特點(diǎn),即:一個(gè)數(shù)的最小的倍數(shù)是它本身,沒(méi)有最大的倍數(shù)。一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
4、例二:找36的所有因數(shù),準(zhǔn)備讓學(xué)生獨(dú)立嘗試,但這部分內(nèi)容對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),所以我采用了四人小組合作的方式讓學(xué)生試著找出36的所有因數(shù)。在找36的因數(shù)時(shí),無(wú)論想乘法算式還是想除法算式,學(xué)生一般都從無(wú)序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學(xué)時(shí)允許他們經(jīng)歷這樣的過(guò)程。先按自己的思路、用自己的方法寫(xiě)36的因數(shù),能寫(xiě)幾個(gè)就寫(xiě)幾個(gè),是什么順序就什么順序。然后在交流中互相評(píng)價(jià),讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個(gè)因數(shù)從小到大的順序,同時(shí)又讓他們掌握按次序地書(shū)寫(xiě)。此外,結(jié)合例題和試一試,通過(guò)比較和歸納,使學(xué)生明確:一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的因數(shù)中最小的是1,最大的是它本身。
5、教材p72第2題讓學(xué)生解決實(shí)際問(wèn)題在表里填數(shù),把4依次乘1、2、3、……得出“應(yīng)付元數(shù)”,然后思考下面的問(wèn)題,可以使學(xué)生進(jìn)一步認(rèn)識(shí)把4依次乘1,2,3,……所得的積,就是4的倍數(shù),進(jìn)一步理解找倍數(shù)的方法。第3題也是解決實(shí)際問(wèn)題填寫(xiě)表里的數(shù),并提出問(wèn)題讓學(xué)生思考,使學(xué)生明確兩個(gè)相乘的數(shù)都是它們積的因數(shù),求一個(gè)數(shù)的所有因數(shù),可以想乘法一對(duì)一對(duì)地找出來(lái),理解找一個(gè)數(shù)的因數(shù)的方法。
為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)的知識(shí)。最后安排了一個(gè)游戲,讓學(xué)生在游戲中進(jìn)一步練習(xí)找一個(gè)數(shù)倍數(shù)或因數(shù)的方法。。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,引入新課
師:人與人之間存在著許多種關(guān)系,你們和你們的媽媽之間是什么關(guān)系……
生、母子、母女關(guān)系。
師:我和你們的關(guān)系是……
生:師生關(guān)系。
師:對(duì),我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書(shū)課題:因數(shù)與倍數(shù))
二、認(rèn)識(shí)因數(shù)與倍數(shù)
師:現(xiàn)在我們來(lái)研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請(qǐng)你們用12個(gè)小正方形擺成不同的長(zhǎng)方形,并根據(jù)擺成的不同情況寫(xiě)出乘法算式。
根據(jù)學(xué)生的匯報(bào)板書(shū):
1×12=12 2×6=12 3×4=12
12÷1=12 12÷2=6 12÷3=4
師:在這3組乘算式中,都有什么共同點(diǎn)?
生:第①組每個(gè)式子都有1、12這兩個(gè)數(shù)。
生:第②組每個(gè)式子都有2、6、12這三個(gè)數(shù)。
生:第③組每個(gè)式子都有3、4、12這三個(gè)數(shù)。
師:(指著第②組)像這樣的乘式子中的三個(gè)數(shù)之間的關(guān)系還有一種說(shuō)法,你們想知道嗎?請(qǐng)看大屏幕
師:2和6與12的關(guān)系還可以怎樣說(shuō)呢?
生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。
師:也就是說(shuō),2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰(shuí)和誰(shuí)還有因數(shù)和倍數(shù)的關(guān)系?
生:3、4和12有因數(shù)和倍數(shù)關(guān)系,3和4是12的因數(shù),12是3和4的倍數(shù)。
生:我認(rèn)為1和12也有因數(shù)和倍數(shù)關(guān)系。1是12的因數(shù),12是1的倍數(shù)。
師:可以說(shuō)12是12的因數(shù)嗎?
生:我認(rèn)為可以,12×1=12,1和12都是12的因數(shù)。
師:說(shuō)得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數(shù)。
師出示:12÷2=5……2。問(wèn):12是2的倍數(shù)嗎?為什么?
生:我認(rèn)為不是,因?yàn)?2除以2有余數(shù)。
師:你能舉一個(gè)算式,并說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)嗎?
生:2×4=8,2和4是8的因數(shù),8是2和4的倍數(shù)。
生:40÷2=20,40是2和20的倍數(shù),2和20是40的因數(shù)。
師出示:0×3 0×10
0÷3 0÷10
通過(guò)剛才的計(jì)算,你有什么發(fā)現(xiàn)?
生:我發(fā)現(xiàn)0和任何數(shù)相乘,都等于0。
生:0除以任何一個(gè)數(shù)都等于0。
生:我補(bǔ)充,0不能作為除數(shù)。
師:所以在研究因數(shù)和倍數(shù)時(shí),我們所說(shuō)的數(shù)一般指整數(shù),不包括0。
生:我有一個(gè)疑問(wèn),在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系,這兩種說(shuō)法一樣嗎?
師:這個(gè)問(wèn)題提得好!誰(shuí)能回答他的問(wèn)題?
生:我覺(jué)得好像不一樣,但不知道為什么?
生:我認(rèn)為不一樣,在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系。
師:說(shuō)的真好。這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說(shuō)的因數(shù)不是以前乘法算式中各部分名稱中的“因數(shù)”,兩者可不能混哦!
三、師生交流、合作探究:
1。出示例1:18的因數(shù)有哪幾個(gè)?
從12的因數(shù)可以看得出,一個(gè)數(shù)的因數(shù)不止一個(gè),那么我們一起找找看18的因數(shù)有哪些?
學(xué)生嘗試完成并交流匯報(bào),說(shuō)說(shuō)你是怎么找的?(18的因數(shù)有:1,2,3,6,9,18)
我們?cè)趯?xiě)的時(shí)候怎樣寫(xiě)才能做到不遺漏、不重復(fù)?
(生:用乘法一對(duì)一對(duì)找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)
5。小結(jié):我們找了這么多數(shù)的因數(shù),你覺(jué)得怎樣找才不容易漏掉?(從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過(guò)程中一對(duì)一對(duì)找,寫(xiě)的時(shí)候從小到大寫(xiě)。)
四、“動(dòng)腦筋出教室”游戲課件
五、課堂練習(xí)
1、請(qǐng)你來(lái)做小法官
(1)4×9=36,所以36是倍數(shù),9是因數(shù)( )
(2)48是6的倍數(shù)。 ( )
(3)在13÷4=31中,13是4的倍數(shù)。 ( )
(4)6是36的因數(shù)。 ( )
(5)在4x0。5=2中,4和0。5是2的因數(shù)。 ( )
2、細(xì)心填一填
(1)、1的因數(shù)是( )
(2)、一個(gè)數(shù)的最大因數(shù)是24這個(gè)數(shù)是()它的最小的因數(shù)是()。
(3)、自然數(shù)32有()個(gè)因數(shù),它們是( )。
(4)、16的因數(shù)有( )
(5)、19的因數(shù)只有( )和( )。
3、我最聰明,我來(lái)回答
(1)、27的因數(shù)有哪些?
(2)、27是哪些數(shù)的倍數(shù)?
六、課時(shí)小結(jié):
本節(jié)課大家學(xué)習(xí)到什么知識(shí),還有什么不明白的地方嗎?有什么疑問(wèn)請(qǐng)?zhí)岢鰜?lái)我們共同來(lái)解決。
七、板書(shū)設(shè)計(jì)
因數(shù)和倍數(shù)
1×12=12 12÷1=12
2×6=12 12÷2=6
3×4=12 12÷3=4
因?yàn)椋篴×b=c,(a,b,c都是不為0的整數(shù))
所以:a,b都是c的因數(shù),c是a,b的倍數(shù)
教學(xué)內(nèi)容:
?義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(五年級(jí)下冊(cè))》第12~13頁(yè)。
教學(xué)目標(biāo):
1、從操作活動(dòng)中理解因數(shù)和倍數(shù)的意義,會(huì)判斷一個(gè)數(shù)是不是另一個(gè)數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義觀點(diǎn)。
3、培養(yǎng)學(xué)生的合作意識(shí)、探索意識(shí),以及熱愛(ài)數(shù)學(xué)學(xué)習(xí)的情感。
教學(xué)重點(diǎn):
理解因數(shù)和倍數(shù)的含義。
教學(xué)難點(diǎn):
能準(zhǔn)確、全面的求一個(gè)數(shù)的因數(shù)。
教學(xué)反思:
教學(xué)《因數(shù)和倍數(shù)》,這是一個(gè)非常枯燥的課題,但我巧妙地運(yùn)用生活中人與人之間的關(guān)系,自然引入到數(shù)與數(shù)之間關(guān)系。為了讓學(xué)生理解因數(shù)和倍數(shù)的含意,教學(xué)過(guò)程中,我立足體現(xiàn)一個(gè)“實(shí)”字,充分應(yīng)用多媒體的優(yōu)點(diǎn),學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過(guò)舉例去驗(yàn)證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識(shí)的規(guī)律。學(xué)生在學(xué)習(xí)中實(shí)實(shí)在在經(jīng)歷了一個(gè)探究的過(guò)程。“動(dòng)腦筋出教室”這一游戲的設(shè)計(jì),學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動(dòng),既鞏固了知識(shí),又享受了數(shù)學(xué)思維的快樂(lè)。
在授課時(shí),我體驗(yàn)到了學(xué)生的快樂(lè)。當(dāng)學(xué)生用自己的學(xué)號(hào)說(shuō)整除、因數(shù)、倍數(shù)之間的關(guān)系時(shí),由于像順口溜,很有趣。每個(gè)學(xué)生都在愉快中學(xué)會(huì)了這節(jié)課的知識(shí)。
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級(jí)下冊(cè)p12一14,練習(xí)二。
【教學(xué)過(guò)程】
一、操作空間,初步感知。
1、同桌用12塊完全一樣的小正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2、學(xué)生動(dòng)手操作,并與同桌交流擺法。
3、請(qǐng)用算式表達(dá)你的擺法。
匯報(bào):1×12=12,2×6=12,3×4=12。
?評(píng)析】通過(guò)讓學(xué)生動(dòng)手操作、想象、表達(dá)等環(huán)節(jié),既為新知探索提供材料,又孕育求一個(gè)數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1、理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學(xué)的角度說(shuō)說(shuō)它們之間的關(guān)系嗎? 師根據(jù)學(xué)生的表達(dá)完成以下板書(shū): 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說(shuō)說(shuō)算式1×12=12,2×6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時(shí),所指的數(shù)是整數(shù)(一般不包括o)。
2、求一個(gè)數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰(shuí)是誰(shuí)的因數(shù)。 學(xué)生匯報(bào)。
師:2和12是36的因數(shù),找1個(gè)、2個(gè)不難,難就難在把36所有的因數(shù)全部找出來(lái),請(qǐng)同學(xué)們找出36的所有因數(shù)。
出示要求:
①可獨(dú)立完成,也可同桌合作。
②可借助剛才找出12的所有因數(shù)的方法。
③寫(xiě)出36的所有因數(shù)。
④想一想,怎樣找才能保證既不重復(fù),又不遺漏。 教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對(duì)一對(duì)找,一直找到兩個(gè)因數(shù)相差很小或相等為止)
師:有序思考更能準(zhǔn)確找出一個(gè)數(shù)的所有因數(shù)。 完成板書(shū):描述式、集合式。
(3)30的因數(shù)有哪些?
?評(píng)析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測(cè)。通過(guò)展示、比較不同的答案,發(fā)現(xiàn)了按順序一對(duì)一對(duì)找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。
3、求一個(gè)數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個(gè)?
找一個(gè)數(shù)的倍數(shù),用1,2,3,4?分別乘這個(gè)數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的倍數(shù)有:一o
?評(píng)析】
由于有了有序思考的基礎(chǔ),求一個(gè)數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4、發(fā)現(xiàn)規(guī)律。
觀察上面幾個(gè)數(shù)的因數(shù)和倍數(shù)的例子,你對(duì)它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學(xué)生匯報(bào),歸納:一個(gè)數(shù)的最小因數(shù)是i,最大因數(shù)是它本身;一個(gè)數(shù)的最小倍數(shù)是它本身,沒(méi)有最大的倍數(shù)。
?評(píng)析】
通過(guò)觀察板書(shū)上幾個(gè)數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
(1)因數(shù)和倍數(shù)是相互的,不能單獨(dú)存在。
(2)找一個(gè)數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2、判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個(gè)數(shù)的最小倍數(shù)是21,這個(gè)數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話。
4、舉座位號(hào)起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說(shuō)一句話讓還坐著的同學(xué)全部起立。
【評(píng)析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過(guò)“說(shuō)一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個(gè)性思維, 體現(xiàn)了知識(shí)的應(yīng)用價(jià)值。
【反思】
本課教學(xué)設(shè)計(jì)重在讓學(xué)生通過(guò)自主探索,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,體驗(yàn)有序思考的重要性。體現(xiàn)了以下兩個(gè)特點(diǎn): 一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動(dòng)多種感官參與學(xué)習(xí),充分發(fā)揮知識(shí)經(jīng)驗(yàn)和生活經(jīng)驗(yàn),使探索成為知識(shí)不斷提升、思維不斷發(fā)展、情感不斷豐富的過(guò)程。第一,把教材中的飛機(jī)圖改為拼長(zhǎng)方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個(gè)同學(xué)找出36的所有因數(shù),由于個(gè)人經(jīng)驗(yàn)和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。第三:通過(guò)觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對(duì)象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話”。不拘形式的說(shuō)話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。 二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠(yuǎn)。探索12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時(shí),教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個(gè)數(shù)的因數(shù)和倍數(shù)時(shí),引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察??梢?jiàn),適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個(gè)認(rèn)知過(guò)程是體驗(yàn)不斷豐富、概念不斷形成、知識(shí)不斷建構(gòu)的過(guò)程。
它山之石可以攻玉,以上就是差異網(wǎng)為大家整理的5篇《《因數(shù)與倍數(shù)》小學(xué)教案》,能夠幫助到您,是差異網(wǎng)最開(kāi)心的事情。