一份全面具體的教案,在接下來的教學工作中起著很大作用,教案是老師為了掌握課堂節(jié)奏事先完成的文字載體,以下是范文社小編精心為您推薦的體積的教案6篇,供大家參考。
體積的教案篇1
教學內(nèi)容:
p19-20頁例5、例6及補充例題,完成做一做及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學過程:
一、復習
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學的長方形,今天我們學習圓柱體體積公式的推導也要運用轉(zhuǎn)化的思想同學們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復播放這個過程,引導學生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,v=sh)
體積的教案篇2
教學內(nèi)容:
本內(nèi)容是六年級下冊第8頁至第9頁。
教材分析:
本節(jié)內(nèi)容是在學生了解了圓柱體的特征,掌握了圓柱表面積的計算方法基礎上進行教學的,是幾何知識的綜合運用,為后面學習圓錐的體積打下基礎,教材重視類比,轉(zhuǎn)化思想的滲透,引導學生經(jīng)歷“類比猜想——驗證說明”的探索過程,掌握圓柱體積的計算方法。
學生分析:
學生已掌握了長方體和正方體體積的計算方法以及圓的面積計算公式的推導過程,在圓柱的體積這節(jié)課化的體現(xiàn)動手實踐,自主探索,合作交流,為突破重、難點。本節(jié)課在教法和學法上從以下幾方面著手:先利用教具通過直觀教學讓學生觀察,比較,動手操作,經(jīng)歷知識產(chǎn)生的過程,發(fā)展學生思維能力;讓學生通過“類比猜想——驗證說明”的探索過程,主動學習,掌握知識形成技能,合作探究學習成為課堂的主要學習方式。
學習目標:
1、使學生理解和掌握圓柱體積的計算方法,在推導圓柱體積計算公式的過程中培養(yǎng)學生初步的空間觀念和動手操作的技能。
2、使學生能夠通過觀察,大膽猜想和驗證獲得新知識在教學活動過程中發(fā)展學生的推理能力,滲透轉(zhuǎn)化思想。
3、引導學生積極參與數(shù)學學習活動,培養(yǎng)學生的數(shù)學意識和合作意識。
教學過程:
出示教學情境:一個杯子能裝多少水呢?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出相關(guān)數(shù)據(jù),就能求出水的體積;倒入量筒里直接得到水的體積。
(設計意圖:讓學生根據(jù)自己已有的知識經(jīng)驗,把圓柱形杯子里的水倒入長方體或正方體容器,使形狀轉(zhuǎn)化成自己熟悉的長方體或正方體,只要求出長方體或正方體的體積就知道水的體積。)
出示第二情境:圓柱形的木柱子的體積是多少?用這種方法還行嗎?怎么辦?
(設計意圖:創(chuàng)設問題情境,引起學生認知沖突,激起學生求知欲望,使學生帶著積極的思維參與到學習中去,從而產(chǎn)生認知的飛躍。)
探究新知:怎樣計算圓柱的體積?(板書課題:計算圓柱的體積)
大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
(設計意圖:在新知識的探索中,合理的猜測能為探索問題,解決問題的思維方向起到導航和推進作用。)
驗證:能否將圓柱轉(zhuǎn)化為學過的立體圖形?
讓學生利用學具動手操作來推導圓柱體積公式(小組合作探究:給學生提供充分的時間和空間),引導學生把圓柱體底面平均分成多個小扇形,沿著高切開,拼成一個近似的長方體。
思考:圓柱體轉(zhuǎn)化成長方體為什么是近似的長方體?怎樣才能使轉(zhuǎn)化的立體圖形更接近長方體?
(設計意圖:讓學生明確圓柱體的底面平均分成的扇形越多拼成的立體圖形就越接近于長方體,滲透“極限”的思想。)
用課件展示切拼過程,讓學生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。
學生討論交流:
1、把圓柱拼成長方體后,什么變了,什么沒變?
2、拼成的長方體與圓柱之間有什么聯(lián)系?
3、通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高
v=sh=πr2h
(設計意圖:在數(shù)學活動中通過觀察比較培養(yǎng)學生抽象概括能力,及邏輯思維能力。)
練習設計:
1、計算下面各圓柱的體積。
(1)s=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半徑為0。4米,高為5米,你能算出它的體積嗎?
(設計意圖:使學生達到舉一反三的效果,從而訓練學生的技能,靈活掌握本課重點。)
3、試一試:
(1)一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個桶的容積是多少升?
(2)一根圓柱形鐵棒,底面周長是12。56厘米,長是100厘米,它的體積是多少?
(設計意圖:運用圓柱的體積計算公式解決生活實際問題,切實體驗到數(shù)學源于生活,身邊處處是數(shù)學。)
4、拓展練習:
(1)填表:
填表后觀察:你發(fā)現(xiàn)了什么?先獨立思考,再小組交流,最后匯報。
(設計意圖:在教學時應找出知識間存在著的密切聯(lián)系,幫助學生建立一個較為完整的知識系統(tǒng),為以后“比例”的教學作了孕伏)
(2)一個柱形容器的底面直徑是10厘米,把一塊鐵塊放入這個容器后,水面上升2厘米,這塊鐵塊的體積是多少?
(設計意圖:體會測量不規(guī)則物體體積的方法,認識到數(shù)學的價值體驗,使學生的思維處于積極的狀態(tài),培養(yǎng)學生思維靈活性,提高學生創(chuàng)造性解決問題的能力。)
課堂小結(jié):談談這節(jié)課你有哪些收獲?
(設計意圖:采用提問式小結(jié),讓學生暢談本節(jié)課的收獲,包括知識,能力,方法,情感等,通過對本節(jié)課所學知識的總結(jié)與回顧,培養(yǎng)學生的歸納概括能力,使學生學到的知識系統(tǒng)化,完整化。)
教學反思:
本節(jié)課采用新的教學理念,創(chuàng)設情境導入滲透轉(zhuǎn)化思想,讓學生在興趣盎然中徑歷自主探究,獨立思考、合作交流從而獲得新知。
情境導入滲透轉(zhuǎn)化思想激發(fā)學生的學習欲望,課的開始讓學生想方法測量出圓柱形水杯中水的體積,學生想出把水倒入長方體容器中轉(zhuǎn)化成長方體的體積來計算出水的體積,初步引導學生把圓柱體的體積轉(zhuǎn)化為長方體的體積。教會學生數(shù)學方法,注重讓學生在操作中探究,動手操作能展示學生個體的實踐活動,在動手過程中易于激發(fā)興趣,積累知識,發(fā)展思維,利于每一位學生自主,獨立,創(chuàng)造性的學習知識,發(fā)展他們的能力,課中讓學生經(jīng)歷知識產(chǎn)生的過程,理解和掌握數(shù)學基礎知識,讓學生在體驗和探索過程中不斷積累知識,逐步發(fā)展其空間觀念,促進學生的思維發(fā)展。
體積的教案篇3
教學內(nèi)容:
教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習二第1~5題。
教學要求:
1.使學生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。
2.培養(yǎng)學生初步的空間觀念和思維能力;讓學生認識轉(zhuǎn)化的思考方法。
教具準備:
圓柱體積演示教具。
教學重點:
理解和掌握圓柱的體積計算公式。
教學難點:
圓柱體積計算公式的推導。
教學過程:
一、鋪墊孕伏:
1.求下面各圓的面積(回答)。
(1)r=1厘米; (2)d=4分米; (3)c=6.28米。
要求說出解題思路。
2.想一想:學習計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。
3.提問:什么叫體積?常用的體積單位有哪些?
4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積高)
二、自主研究:
1.根據(jù)學過的體積概念,說說什么是圓柱的體積。(板書課題)
2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。
3.公式推導。(可分小組進行)
(1)請同學指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導。(切拼轉(zhuǎn)化)
(3)探索求圓柱體積的公式。
根據(jù)圓面積剪、拼轉(zhuǎn)化成長方形的思路,我們也可以運用切拼轉(zhuǎn)化的方法把圓柱體變成學過的幾何形體來推導出圓柱的體積計算公式。你能想出怎樣切、拼轉(zhuǎn)化嗎?請同學們仔細觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關(guān)系。教師演示圓柱體積公式推導演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體??梢韵胂?,分成的扇形越多,拼成的立體圖形就越接近于長方體。
(4)討論并得出結(jié)果。
你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積高)用字母表示: 。(板書:v=sh)
(5)小結(jié)。
圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?
4.教學例1。
出示例1,審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位)
0.9米=90厘米 2490=2160(立方厘米)
5.做練習二第1題。
讓學生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?
6.教學試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學生做在練習本上。評講試一試小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面積再求體積。
7. 教學例2。
出示例2,審題。小組討論計算方法,然后學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位,結(jié)果保留整數(shù)。)
體積的教案篇4
教學目標:
1、使學生能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
4、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
教學重點:掌握圓柱體積的計算公式。
教學難點:靈活應用圓柱的體積公式解決實際問題。
教學過程:
一、復習
1、復習圓柱體積的推導過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積高,所以圓柱的體積=底面積高,即v=sh。
2、復習長方體的體積公式后,讓學生獨立完成練習三第6題,并指名板演。
二、解決實際問題
1、練習三第7題。
學生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。
2、練習三第5題。
(1)指導學生變換公式:因為v=sh,所以h=vs。也可以列方程解答。
(2)學生選擇喜愛的方法解答這道題目。
3、練習三第8題。
(1)學生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
(2)在充分理解題意后學生獨立完成,集體訂正。
4、練習三第9、10題
(1)學生獨立審題,完成9、10兩題。
(2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式v=sh)
(3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。
三、布置作業(yè)
完成一課三練的相關(guān)練習。
體積的教案篇5
教學內(nèi)容:教科書第52頁練習十二的第69題。
教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。
教學過程:
一、復習
1.圓錐的體積公式是什么?
2.填空。
(1)一個圓錐的體積是與它等底等高的圓柱體積的
(2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。
(3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。
二、課堂練習
1.做練習十二的第6題。
教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:
讓學生分組討論一下,然后各自讓一名學生說說討論的結(jié)果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板
測量出圓錐的高,這樣就可以求出圓錐的體積。
2.做練習十二的第7題。
讀題后,教師可以先后提問:
這道題已知什么?求什么?
要求這堆沙的重量,應該先求什么?怎樣求?
指名學生回答后,讓學生做在練習本上,做完后集體訂正。
3.做練習十二的第8題。
讀題后,教師可提出以下問題:
這道題要求的是什么?
要求這段鋼材重多少千克,應該先求什么?怎樣求?
能直接利用題目中的數(shù)值進行計算嗎?為什么?
題目中的單位不統(tǒng)一,應該怎樣統(tǒng)一?
分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結(jié)果還應把克改寫成千克。
4.做練習十二的第9題。
讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?
要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。
讓學生獨立做在練習本上,做完后集體訂正。
三、選做題
讓學有余力的學生做練習十二的第10*、11*、12*題。
1.練習十二的第10*題。
教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?
引導學生利用c=2r可以得到r= 。再利用sr,就可以求得s=( )。再利用圓錐的體積公式就可以求出其體積。
2.練習十二的第11*題。
這是一道有關(guān)圓柱、圓錐體積的比例應用題。
可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。
設圓柱的高為x厘米。
=
x=9。6
(注意:由于圓錐和圓柱的底面積s都相等,所以計算中可以先把s約去。)
3.練習十二的第12題。
這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。
體積的教案篇6
一、教學內(nèi)容:人教版教材六年級下冊19——20頁例5例6及相關(guān)的練習題。
二、教學目標:
1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經(jīng)歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。并會解決一些簡單的實際問題。
3、注意滲透類比、轉(zhuǎn)化思想。
三、教學重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。
四、教學難點:推導圓柱的體積計算公式。
五、教法要素:
1、已有的知識和經(jīng)驗:體積、體積單位,學習長方體正方體的體積公式的經(jīng)驗。
2、原型:圓柱模型。
3、探究的問題:
(1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學過的立體圖形來計算體積?
(2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個
部分?
(3)怎樣計算圓柱的體積?
六、教學過程:
(一)喚起與生成。
1、什么叫物體的體積?我們學過哪些立體圖形的體積計算?
2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?
切入教學:怎樣計算圓柱的體積?圓柱的體積計算會和什么有關(guān)?
(二)探究與解決。
探究:圓柱的體積
1、 提出問題,啟發(fā)思考:如何計算圓柱的體積?
2、 類比猜測,提出假設:結(jié)合長方體和正方體體積計算的知識,即長方
體和正方體的體積都等于底面積×高,據(jù)此分析并猜測圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設,圓柱的體積可能等于底面積×高。
3、 轉(zhuǎn)化物體,分析推理:
怎樣來驗證我們的猜想?我們在學圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導出圓的面積計算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學過的立體圖形呢?應該怎樣轉(zhuǎn)化?結(jié)合圓的面積計算小組討論。學生匯報交流。
(拿出平均分好的圓柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學生觀察。)現(xiàn)在利用這個圓柱模型小組合作把它轉(zhuǎn)化為我們學過的立體圖形。學生在小組合作后匯報交流。
4、全班交流,公式歸納:
交流時,要學生說明拼成的長方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長方體的底面積有什么關(guān)系?拼成的長方體的高和圓柱的高有什么關(guān)系?引導學生推導出圓柱的體積計算方法。圓柱的體積=底面積×高。(在這一過程中,使學生認識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長方體的體積,分的份數(shù)越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,并用字母表示。
回想一下,剛才我們是怎樣推導出圓柱的體積計算公式的?
5、舉一反三,應用規(guī)律:
(1)你能用這個公式解決實際問題嗎?20頁做一做,學生獨立完成,全班訂正。
如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導學生推導出v=∏r2h
(2)教學例6
學生審題之后,引導學生思考:解決這個問題就是要計算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學生獨立解決。反饋時,要引導學生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
(三)訓練與強化。
1、基本練習。
練習三第1題,學生獨立完成,這兩個都可以直接用v=sh來計算。全班訂正,注意培養(yǎng)學生良好的計算習慣。
2、變式練習。
第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學生獨立完成,在交流時,注意計算方法的指導。
第3題。求裝多少水,實際是求這個水桶的容積。學生獨立完成,全班交流。水是液體,單位應用毫升或升。
3、綜合練習。
第5題。這題中知道了圓柱的體積和底面積求高,引導學生推出h=v÷s,如果有困難,也可列方程解答。學生獨立完成,有困難的小組交流。
4、提高性練習。22頁第10題,學生先小組討論,再全班交流。
(四)總結(jié)與提高。
這節(jié)課我們是怎樣推導出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三棱柱、鋼管等),讓學生計算出他們的體積。