初二上冊教案數(shù)學5篇

時間:2022-12-20 作者:couple 備課教案

通過寫教案,大部分人都可以讓自己的思維能力得到鍛煉,為了鍛煉我們的思考能力,你知道該如何制定教案嗎,范文社小編今天就為您帶來了初二上冊教案數(shù)學5篇,相信一定會對你有所幫助。

初二上冊教案數(shù)學5篇

初二上冊教案數(shù)學篇1

教學目標:

1、 經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

2、 探索并理解直角三角形的三邊之間的數(shù)量關系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發(fā)現(xiàn)

教學過程

一、 創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

出示投影1 (章前的圖文 p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

出示投影2 (書中的p2 圖1—2)并回答:

1、 觀察圖1-2,正方形a中有_______個小方格,即a的面積為______個單位。

正方形b中有_______個小方格,即a的面積為______個單位。

正方形c中有_______個小方格,即a的面積為______個單位。

2、 你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發(fā)問:

3、 圖1—2中,a,b,c 之間的面積之間有什么關系?

學生交流后形成共識,教師板書,a+b=c,接著提出圖1—1中的a.b,c 的關系呢?

二、 做一做

出示投影3(書中p3圖1—4)提問:

1、圖1—3中,a,b,c 之間有什么關系?

2、圖1—4中,a,b,c 之間有什么關系?

3、 從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

學生討論、交流形成共識后,教師總結:

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、 議一議

1、 圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、 你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、 分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、 想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、 鞏固練習

1、 錯例辨析:

△abc的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應滿足 =25

即:c=5

辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

△ abc并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

(2)若告訴△abc是直角三角形,第三邊c也不一定是滿足 ,題目中并為交待c 是斜邊

綜上所述這個題目條件不足,第三邊無法求得。

2、 練習p7 §1.1 1

六、 作業(yè)

課本p7 §1.1 2、3、4

初二上冊教案數(shù)學篇2

一、學生情況分析及改進提高措施:

學生們經(jīng)過兩年的學習,已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學習習慣,掌握了一些科學的學習方法,學會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎知識和基本技能打得也比較扎實,對數(shù)學學習有著濃厚的興趣,樂于參與到學習活動中去,特別是對一些動手操作,合作學習,實踐活動等學習內(nèi)容尤為感興趣,因此,在教學中應多設計一些活動,引導學生進行獨立思考與合作交流,幫助學生積累參加數(shù)學學習活動的經(jīng)驗。

在數(shù)學知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學會了辨認八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應的知識解決實際生活中的問題??傊?,這些技能和知識點都為本學期進一步學習新知識打下了堅實的基礎,他們愛學數(shù)學的熱情,以及對數(shù)學的感悟能力會在本學期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。

具體提高措施是:

1.從學生的年齡特點出發(fā),多采用情境活動式教學,培養(yǎng)學生的參與意識。兩班學生都能根據(jù)教師給出的情境獲取相關的數(shù)學信息,并能根據(jù)有效信息提出數(shù)學問題,能積極投入到探索問題的活動中去,絕大部分學生能夠在課堂上主動的研究問題,獲取知識。

2.在課堂教學中,多增添一些與學生生活相關的利于孩子理解的問題,讓學生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結合學生的生活實際,將問題生活化,讓學生從生活中獲取到更多的解決問題的素材。

3.課后練習注重增添以學習內(nèi)容為主的相關實踐練習,加強各學科之間的聯(lián)系,少一些呆板的練習,提高練習的實踐性和趣味性。在上學期的教學中,我發(fā)現(xiàn)學生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學與科學課相結合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學生完成作業(yè)的積極性特別高。我為了讓學生了解長度單位,讓他們從成語詞典上收集有關長度單位的成語,通過對詞語的理解把握其表示的長度。

4.加強學校教育和家庭教育的聯(lián)系。關注學生的平時學習情況,與學生家長多溝通交流。

二、本冊教材分析

本冊教材充分體現(xiàn)了新《課程標準》的理念,以學生的數(shù)學活動實踐為學習內(nèi)容,教材創(chuàng)設了生動有趣的情境,引導學生在解決現(xiàn)實問題的過程中獲得對數(shù)學知識的理解和體驗。教學內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復習,一個總復習。具體特點是:

1.在數(shù)與代數(shù)的學習中,重視動手操作與抽象概括相結合,體驗乘、除法意義,發(fā)展了學生的數(shù)感和符號感。

2.在空間和圖形學習中,從學生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。

3.教材為教師留下了創(chuàng)造空間,可結合自身教學要求,生發(fā)新的教學設想,內(nèi)化自己的教學設計。

三、總體教學目標:

(一)、知識與技能

1.在單元學習中,學生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

2.學平面圖形的周長,會進行周長的計算。

(二)、實踐能力培養(yǎng)

1.觀察物體,引導學生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。

2.結合生活情境,感受并認識質量單位。

3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結果。

(三)、情感與態(tài)度

1、讓學生在觀察和操作的學習活動中,能夠感受到思考的條理性和合理性。

2、教師重視對學生數(shù)學學習過程的評價,讓他們在感受到樂趣之外,應具備必要的學習自信心,養(yǎng)成良好的學習習慣。

教研專題:

創(chuàng)設課堂學習情境,有效培養(yǎng)創(chuàng)新意識。

個人專題:

在情境中培養(yǎng)學生的自主學習意識,提高課堂的有效性。

初二上冊教案數(shù)學篇3

教材分析

1、 本節(jié)課首先從最簡單的正比例函數(shù)入手.從正比例函數(shù)的定義、函數(shù)關系式、引入次函數(shù)的概念。

2、 八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習初、高中其它函數(shù)和高中解析幾何中的直線方程的基礎。

學情分析

1、雖然這是一節(jié)全新的數(shù)學概念課,學生沒有接觸過。但是,孩子們已經(jīng)具備了函數(shù)的一些知識,如正比例函數(shù)的概念及性質,這些都為學習本節(jié)內(nèi)容做好了鋪墊。

2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習其它函數(shù)的基礎。

3、學生認知障礙點:根據(jù)問題信息寫出一次函數(shù)的表達式。

教學目標

1、 理解一次函數(shù)與正比例函數(shù)的概念以及它們的關系,在探索過程中,發(fā)展抽象思維及概括能力,體驗特殊和一般的辯證關系。

2、 能根據(jù)問題信息寫出一次函數(shù)的表達式。能利用一次函數(shù)解決簡單的實際問題。

3、 經(jīng)歷利用一次函數(shù)解決實際問題的過程,逐步形成利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。

教學重點和難點

1、一次函數(shù)、正比例函數(shù)的概念及關系。

2、會根據(jù)已知信息寫出一次函數(shù)的表達式。

初二上冊教案數(shù)學篇4

八年級下數(shù)學教案-變量與函數(shù)(2)

一、教學目的

1.使學生理解自變量的取值范圍和函數(shù)值的意義。

2.使學生理解求自變量的取值范圍的兩個依據(jù)。

3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。

4.通過求函數(shù)中自變量的取值范圍使學生進一步理解函數(shù)概念。

二、教學重點、難點

重點:函數(shù)自變量取值的求法。

難點:函靈敏處變量取值的確定。

三、教學過程

復習提問

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?

2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。

新課

1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結合同學舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。

(2)自變量取值范圍要使實際問題有意義。

3.講解p93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。

推廣與聯(lián)想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

4.講解p93中例3。結合例3引出函數(shù)值的意義。并指出兩點:

(1)例3中的4個小題歸納起來仍是三類題型。

(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。

補充例題

求下列函數(shù)當x=3時的函數(shù)值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小結

1.解析法的意義:用數(shù)學式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時,自變量可取全體實數(shù);

②函數(shù)的解析式是分式時,自變量的取值應使分母≠0;

③函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)≥0。

(2)對于反映實際問題的函數(shù)關系,應使實際問題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習:p94中1,2,3。

作業(yè):p95~p96中a組3,4,5,6,7。b組1,2。

四、教學注意問題

1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。

2.注意訓練與培養(yǎng)學生的優(yōu)質聯(lián)想能力。要求學生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。

初二上冊教案數(shù)學篇5

教學目的

通過分析儲蓄中的數(shù)量關系、商品利潤等有關知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。

重點、難點

1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數(shù)

本利和=本金×利息×年數(shù)+本金

2.商品利潤等有關知識。

利潤=售價—成本; =商品利潤率

二、新授

問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息—利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×x×2,利息稅為2.43%x×2×20%

根據(jù)等量關系,得2.43%x·2—2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%—x

由等量關系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據(jù)題意首先尋找“等量關系”。

五、作業(yè)

教科書第16頁,習題6.3.1,第4、5題。