10的分解教案5篇

時間:2022-10-05 作者:Gourmand 備課教案

教案是教師為了順利開展教學提早起草的教學文書,眾所周知,要想新學期的教學工作圓滿完成,一定少不了要準備一份教案,以下是范文社小編精心為您推薦的10的分解教案5篇,供大家參考。

10的分解教案5篇

10的分解教案篇1

(一)學習目標

1、會用因式分解進行簡單的多項式除法

2、會用因式分解解簡單的方程

(二)學習重難點重點:因式分解在多項式除法和解方程中兩方面的應用。

難點:應用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點。

(三)教學過程設計

看一看

1.應用因式分解進行多項式除法.多項式除以多項式的一般步驟:

①________________②__________

2.應用因式分解解簡單的一元二次方程.

依據__________,一般步驟:__________

做一做

1.計算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成課后練習題

想一想

你還有哪些地方不是很懂?請寫出來。

____________________________________

(四)預習檢測

1.計算:

2.先請同學們思考、討論以下問題:

(1)如果a×5=0,那么a的值

(2)如果a×0=0,那么a的值

(3)如果ab=0,下列結論中哪個正確( )

①a、b同時都為零,即a=0,

且b=0;

②a、b中至少有一個為零,即a=0,或b=0;

(五)應用探究

1.解下列方程

2.化簡求值:已知x-y=-3,-x+3y=2,求代數式x2-4xy+3y2的值

(六)拓展提高:

解方程:

1、(x2+4)2-16x2=0

2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

(七)堂堂清練習

1.計算

2.解下列方程

①7x2+2x=0

②x2+2x+1=0

③x2=(2x-5)2

④x2+3x=4x

10的分解教案篇2

教學目標:

1、進一步鞏固因式分解的概念;

2、鞏固因式分解常用的三種方法

3、選擇恰當的方法進行因式分解

4、應用因式分解來解決一些實際問題

5、體驗應用知識解決問題的樂趣

教學重點:靈活運用因式分解解決問題

教學難點:靈活運用恰當的因式分解的方法,拓展練習2、3

教學過程:

一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值

利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

(7).2πr+2πr=2π(r+r) 因式分解

2、.規(guī)律總結(教師講解): 分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點: (1).分解的對象必須是多項式.

(2).分解的結果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.

3、因式分解的方法

提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

4、強化訓練

試一試把下列各式因式分解:

(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

三、例題講解

例1、分解因式

(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

(3) (4)y2+y+例2、分解因式

1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

例3、分解因式

1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

三、知識應用

1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數整除?

四、拓展應用

1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

2、20042+2004被2005整除嗎?

3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.

五、課堂小結:今天你對因式分解又有哪些新的認識?

10的分解教案篇3

教學設計思想:

本小節(jié)依次介紹了平方差公式和完全平方公式,并結合公式講授如何運用公式進行多項式的.因式分解。第一課時的內容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學生的逆向思維和推理能力,然后讓學生獨立去做例題、練習中的題目,并對結果通過展示、解釋、相互點評,達到能較好的運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的因式分解是在學生已經學習了提取公因式法及利用平方差公式分解因式的基礎上進行的,因此在教學設計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質。

教學目標

知識與技能:

會用平方差公式對多項式進行因式分解;

會用完全平方公式對多項式進行因式分解;

能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;

提高全面地觀察問題、分析問題和逆向思維的能力。

過程與方法:

經歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。

情感態(tài)度價值觀:

通過學習進一步理解數學知識間有著密切的聯系。

教學重點和難點

重點:①運用平方差公式分解因式;②運用完全平方式分解因式。

難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式

關鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。

10的分解教案篇4

教學目標

教學知識點

使學生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關系。

潛力訓練要求。

透過觀察,發(fā)現分解因式與整式乘法的關系,培養(yǎng)學生觀察潛力和語言概括潛力。

情感與價值觀要求。

透過觀察,推導分解因式與整式乘法的關系,讓學生了解事物間的因果聯系。

教學重點

1、理解因式分解的好處。

2、識別分解因式與整式乘法的關系。

教學難點透過觀察,歸納分解因式與整式乘法的關系。

教學方法觀察討論法

教學過程

Ⅰ、創(chuàng)設問題情境,引入新課

導入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

Ⅱ、講授新課

1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

993-99=99×98×100

2、議一議

你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。

3、做一做

(1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

(2)根據上面的算式填空:

①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

④y2-6y+9=()2。⑤a3-a=()()。

定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

4。想一想

由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?

下面我們一齊來總結一下。

如:m(a+b+c)=ma+mb+mc(1)

ma+mb+mc=m(a+b+c)(2)

5、整式乘法與分解因式的聯系和區(qū)別

ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

6。例題下列各式從左到右的變形,哪些是因式分解?

(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

Ⅲ、課堂練習

p40隨堂練習

Ⅳ、課時小結

本節(jié)課學習了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學習了整式乘法與分解因式的關系是相反方向的變形。

10的分解教案篇5

第6.4因式分解的簡單應用

背景材料:

因式分解是初中數學中的一個重點內容,也是一項重要的基本技能和基礎知識,更是一種數學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數學問題中有著廣泛的作用,因式分解在三角形中的應用,因式分解可以用來證明代數問題,用于代數式的求值,用于求不定方程,用于解應用題解決有關復雜數值的計算,本節(jié)課的例題因式分解在數學題中的簡單應用。

教材分析:

本節(jié)課是本章的最后一節(jié),是學生學習因式分解初步應用,首先要使學生體會到因式分解在數學中應用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經歷”,使多數學里擁有一定問題解決的經驗。

教學目標:

1、在整除的情況下,會應用因式分解,進行多項式相除。

2、會應用因式分解解簡單的一元二次方程。

3、體驗數學問題中的'矛盾轉化思想。

4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。

教學重點:

學會應用因式分解進行多項式除法和解簡單一元二次方程。

教學難點:

應用因式分解解簡單的一元二次方程。

設計理念:

根據本節(jié)課的內容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

教學過程:

一、創(chuàng)設情境,復習提問

1、將正式各式因式分解

(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

(3)2 a2b-8a2b (4)4x2-9

[四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]

教師訂正

提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)

二、導入新課,探索新知

(先讓學生思考上面所提出的問題,教師從旁啟發(fā))

師:如果出現豎式計算,教師可以給予肯定;可能出現(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據是什么?這樣暴露學生的思維,讓學生自己發(fā)現錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數,如果用“換元”思想,我們就可以把問題轉化為單項式除以單項式。

(2 a2b-8a2b)÷(4a-b)

=-2ab(4a-b)÷(4a-b)

=-2ab

(讓學生自己比較哪種方法好)

利用上面的數學解題思路,同學們嘗試計算

(4x2-9)÷(3-2x)

學生總結解題步驟:1、因式分解;2、約去公因式)

(全體學生動手動腦,然后叫學生回答,及時表揚,講練結合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉化為單項式的除法]

練習計算

(1)(a2-4)÷(a+2)

(2)(x2+2xy+y2)÷(x+y)

(3)[(a-b)2+2(b-a)] ÷(a-b)

三、合作學習

1、以四人為一組討論下列問題

若a?b=0,下面兩個結論對嗎?

(1)a和b同時都為零,即a=0且b=0

(2)a和b至少有一個為零即a=0或b=0

[合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]

2、你能用上面的結論解方程

(1)(2x+3)(2x-3)=0 (2)2x2+x=0

解:

∵(2x+3)(2x-3)=0

∴2x+3=0或2x-3=0

∴方程的解為x=-3/2或x=3/2

解:x(2x+1)=0

則x=0或2x+1=0

∴原方程的解是x1=0,x2=-1/2

[讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉化為解一元一次方程]

3、練習,解下列方程

(1)x2-2x=0 4x2=(x-1)2

四、小結

(1)應用因式分解和換元思想可以把某些多項式除法轉化為單項式除法。

(2)如果方程的等號一邊是零,另一邊含有未知數x的多項式可以分解成若干個x的一次式的積,那么就可以應用因式分解把原方程轉化成幾個一元一次方程來解。

設計理念:

根據本節(jié)課的內容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。