一元二次方程的教案5篇

時間:2022-09-29 作者:Animai 備課教案

教案是教師為了掌握課堂節(jié)奏提早撰寫的文字材料,想要寫出內容具體的教案就必須認真思考自己的教學能力,下面是范文社小編為您分享的一元二次方程的教案5篇,感謝您的參閱。

一元二次方程的教案5篇

一元二次方程的教案篇1

1、使學生會用列一元二次方程的方法解決有關增長率的應用題;

2、進一步培養(yǎng)學生分析問題、解決問題的能力。

會列一元二次方程解關于增長率問題的應用題。

如何分析題意,找出等量關系,列方程。

一、 復習提問:

列一元二次方程解應用題的一般步驟是什么?

二、探索新知

1.情境導入

問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農民脫貧致富的一項戰(zhàn)略措施,某村村長為帶領全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務,而實際完成的畝數比承包數增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務,求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?

2.合作探究、師生互動

教師引導學生分析關于環(huán)保的情境導入問題,這是一個平均增長率問題,它的基數是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數是30(1+x),第二次增長后,即2003年實際完成的畝數是30(1+x)2,而這一年村長完成的畝數正好是36.3畝.

教師引導學生運用方程解決問題:

①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.

②全村坡耕地還林還草為50×36.3=1 815(畝),國家將補助糧食1 815×500=907 500(斤)=90.75(萬斤).

三、例題學習

說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。

例、某產品原來每件是600元,由于連續(xù)兩次降價,現價為384元,如果兩降價的百分率相同,求每次降價百分之幾?

(小組合作交流教師點撥)

時間 基數 降價 降價后價錢

第一次 600 600x 600(1-x)

第二次 600(1-x) 600(1-x)x 600(1-x)2

(由學生寫出解答過程)

四、鞏固練習

一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?

五、課堂總結:

1、善于將實際問題轉化為數學問題,嚴格審題,弄清各數據間相互關系,正確列出方程。

2、注意解方程中的巧算和方程兩個根的取舍問題。

六、反饋練習:

1.某商品計劃經過兩個月的時間將售價提高20%,設每月平均增長率為x,則列出的方程為()

a.x+(1+x)x=20% b.(1+x)2=20%

c.(1+x)2=1.2 d.(1+x%)2=1+20%

2.某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()

3.某種藥劑原售價為4元,經過兩次降價,現在每瓶售價為2.56元,問平均每次降低百分之幾?

一元二次方程的教案篇2

1、一元二次方程的求根公式的推導

2、會用求根公式解一元二次方程.

3、通過運用公式法解一元二次方程的訓練,提高學生的運算能力,養(yǎng)成良好的運算習慣

重點:一元二次方程的求根公式.

難點:求根公式的條件:b2 -4ac≥0

一、自學質疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步驟是什么?

3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數根呢?

二、交流展示:

剛才我們已經利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?

三、互動探究:

一般地,對于一元二次方程ax2+bx+c=0

(a≠0),當b2-4ac≥0時,它的根是

用求根公式解一元二次方程的方法稱為公式法

由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數a、b、c確定的.因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號.

(2)在運用求根公式求解時,應先計算b2-4ac的值;當b2-4ac≥0時,可以用公式求出兩個不相等的實數解;當b2-4ac

四、精講點撥:

例1、課本例題

總結:其一般步驟是:

(1)把方程化為一般形式,進而確定a、b,c的值.(注意符號)

(2)求出b2-4ac的值.(先判別方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后寫出方程的.根.

例2、解方程:

(1)2x2-7x+3=0 (2) x2-7x-1=0

(3) 2x2-9x+8=0 (4) 9x2+6x+1=0

五、糾正反饋:

做書上第p90練習。

六、遷移應用:

例3、一個直角三角形三邊的長為三個連續(xù)偶數,求這個三角形的三條邊長.

例4、求方程 的兩根之和以及兩根之積

拓展應用:關于 的一元二次方程 的一個根是 ,則 ;

方程的另一根是

一元二次方程的教案篇3

教學目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數學的興趣。

教學難點和難點:

重點:

1.一元二次方程的有關概念

2.會把一元二次方程化成一般形式

難點:一元二次方程的含義.

教學過程設計

一、引入新課

引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應該怎樣剪?

分析:1.要解決這個問題,就要求出鐵片的長和寬。

2.這個問題用什么數學方法解決?(間接計算即列方程解應用題。

3.讓學生自己列出方程( x(x十5)=150 )

深入引導:方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?

二、新課

1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數研究的主要對象是方程。這部分內容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)

2.什么是—元二次方程呢?現在我們來觀察上面這個方程:它的左右兩邊都是關于未知數的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數的次數是幾。如果方程未知數的次數是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

3.強化一元二次方程的概念

下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:(2)x2=4

(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8

從以上4例讓學生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數的次數是否是2。

4.一元二次方程概念的延伸

提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

引導學生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學生運用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

2).講解方程中ax2、bx、c各項的名稱及a、b的系數名稱.

3).強調:一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數項可以不出現、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

強化概念(課本p6)

1.說出下列一元二次方程的二次項系數、一次項系數、常數項:

(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0

(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數、一次項系數、常數項:

(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

課堂小節(jié)

(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數的次數為2,這樣的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數項可以不出現、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;

(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數項:二次項系數、一次項系數.

一元二次方程的教案篇4

教學內容: 12.1 用公式解一元二次方程(一)

教學目標:

知識與技能目標:1.使學生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數、一次項系數及常數項.

過程與方法目標: 1.通過一元二次方程的引入,培養(yǎng)學生分析問題和解決問題的能力;2.通過一元二次方程概念的學習,培養(yǎng)學生對概念理解的完整性和深刻性.

情感與態(tài)度目標:由知識來源于實際,樹立轉化的思想,由設未知數列方程向學生滲透方程的思想方法,由此培養(yǎng)學生用數學的意識.,數學教案-用公式法解一元二次方程。

教學重、難點與關鍵:

重點:一元二次方程的意義及一般形式.

難點:正確識別一般式中的“項”及“系數”。

教輔工具:

教學程序設計:

程序

教師活動

學生活動

備注

創(chuàng)設

問題

情景

1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學生拿出事先準備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學生的實際操作,為解決下面的問題奠定基礎,同時培養(yǎng)學生手、腦、眼并用的能力.

2.現有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應該怎樣求出截去的小正方形的邊長?

教師啟發(fā)學生設未知數、列方程,經整理得到方程x2-70x+825=0,此方程不會解,說明所學知識不夠用,需要學習新的知識,學了本章的知識,就可以解這個方程,從而解決上述問題.

板書:“第十二章一元二次方程”.教師恰當的語言,激發(fā)學生的求知欲和學習興趣.

學生看投影并思考問題

通過章前引例和節(jié)前引例,使學生真正認識到知識來源于實際,并且又為實際服務,學習了一元二次方程的知識,可以解決許多實際問題,真正體會學習數學的意義;產生用數學的意識,調動學生積極主動參與數學活動中.同時讓學生感到一元二次方程的解法在本章中處于非常重要的地位.

1

1.復習提問

(1)什么叫做方程?曾學過哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含義?

(3)什么叫做分式方程?

2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應怎樣剪?

引導,啟發(fā)學生設未知數列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

整式方程:方程的兩邊都是關于未知數的整式,這樣的方程稱為整式方程.

一元二次方程:只含有一個未知數,且未知數的最高次數是2,這樣的整式方程叫做一元二次方程.

3.練習:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

一元二次方程的教案篇5

教材分析

1.本節(jié)在引言中的方程基礎上,首先通過兩個實際問題,進一步引出一元二次方程的具體例子,然后引導學生觀察出它們的共同點,得出一元二次方程的定義。

2.書中的定義是以未知數的個數和次數為標準,用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

3、本節(jié)始終都有列方程的內容,這樣安排一方面是分散列方程這一教學難點,化整為零地培養(yǎng)由實際問題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。

學情分析

1、通過課堂練習,大部分學生對概念基本理解,能夠找出各項系數,但有少數學困生對于系數符號沒有掌握。

2、部分學生由于基礎較薄弱,用一元二次方程解決實際問題有一定的`難度,解決這問題要以多練為主。

3、學生認知障礙點:一元二次方程與不等式和整式的綜合運用能力有待提高。

教學目標

1、從實際問題引出一元二次方程,使學生進一步體會方程是刻畫現實世界中數量關系的一個有效數學模型,培養(yǎng)學生分析問題和解決問題的能力及用數學的意識。

2、使學生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉化為一般形式,正確識別二次項系數、一次項系數及常數項。

3、通過概念教學,培養(yǎng)學生的觀察、類比、歸納能力,同時通過變式練習,使學生對概念理解具備完整性和深刻性。

教學重點和難點

1、重點:概念的形成及一般形式。

2、難點:從實際問題引出一元二次方程;正確識別一般形式中的“項”及“系數”。